ترغب بنشر مسار تعليمي؟ اضغط هنا

A note on the sum of finite multiple harmonic $q$-series on $rtext{-}(r+1)$ indices

127   0   0.0 ( 0 )
 نشر من قبل Zhonghua Li
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the sum of the finite multiple harmonic $q$-series on $rtext{-}(r+1)$ indices at roots of unity with $r=1,2,3$. And we give the equivalent conditions of two conjectures regarding cyclic sums of finite multiple harmonic $q$-series on $1text{-}2text{-}3$ indices at roots of unity, posed recently by Kh. Pilehrood, T. Pilehrood and R. Tauraso.



قيم البحث

اقرأ أيضاً

The objective of this paper is to derive symmetric property of (h,q)-Zeta function with weight alpha. By using this property, we give some interesting identities for (h,q)-Genocchi polynomials with weight alpha. As a result, our applications possess a number of interesting property which we state in this paper.
We investigate arithmetic properties of values of the entire function $$ F(z)=F_q(z;lambda)=sum_{n=0}^inftyfrac{z^n}{prod_{j=1}^n(q^j-lambda)}, qquad |q|>1, quad lambda otin q^{mathbb Z_{>0}}, $$ that includes as special cases the Tschakaloff functio n ($lambda=0$) and the $q$-exponential function ($lambda=1$). In particular, we prove the non-quadraticity of the numbers $F_q(alpha;lambda)$ for integral $q$, rational $lambda$ and $alpha otin-lambda q^{mathbb Z_{>0}}$, $alpha e0$.
We define and investigate real analytic weak Jacobi forms of degree 1 and arbitrary rank. En route we calculate the Casimir operator associated to the maximal central extension of the real Jacobi group, which for rank exceeding 1 is of order 4. In ra nks exceeding 1, the notions of H-harmonicity and semi-holomorphicity are the same.
We present several sequences involving harmonic numbers and the central binomial coefficients. The calculational technique is consists of a special summation method that allows, based on proper two-valued integer functions, to calculate different fam ilies of power series which involve odd harmonic numbers and central binomial coefficients. Furthermore it is shown that based on these series a new type of nonlinear Euler sums that involve odd harmonic numbers can be calculated in terms of zeta functions.
We obtain reasonably tight upper and lower bounds on the sum $sum_{n leqslant x} varphi left( leftlfloor{x/n}rightrfloorright)$, involving the Euler functions $varphi$ and the integer parts $leftlfloor{x/n}rightrfloor$ of the reciprocals of integers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا