ﻻ يوجد ملخص باللغة العربية
The objective of this paper is to derive symmetric property of (h,q)-Zeta function with weight alpha. By using this property, we give some interesting identities for (h,q)-Genocchi polynomials with weight alpha. As a result, our applications possess a number of interesting property which we state in this paper.
We present several formulae for the large $t$ asymptotics of the Riemann zeta function $zeta(s)$, $s=sigma+i t$, $0leq sigma leq 1$, $t>0$, which are valid to all orders. A particular case of these results coincides with the classical results of Sieg
In this paper we give the q-extension of Euler numbers which can be viewed as interpolating of the q-analogue of Euler zeta function ay negative integers, in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers.
In this paper we consider Dedekind type DC sums and prove receprocity laws related to DC sums.
We study the sum of the finite multiple harmonic $q$-series on $rtext{-}(r+1)$ indices at roots of unity with $r=1,2,3$. And we give the equivalent conditions of two conjectures regarding cyclic sums of finite multiple harmonic $q$-series on $1text{-
Context. Statistical properties of HII region populations in disk galaxies yield important clues to the physics of massive star formation. Aims. We present a set of HII region catalogues and luminosity functions for a sample of 56 spiral galaxies i