ترغب بنشر مسار تعليمي؟ اضغط هنا

Fine-grained Data Distribution Alignment for Post-Training Quantization

158   0   0.0 ( 0 )
 نشر من قبل Mingbao Lin
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

While post-training quantization receives popularity mostly due to its evasion in accessing the original complete training dataset, its poor performance also stems from this limitation. To alleviate this limitation, in this paper, we leverage the synthetic data introduced by zero-shot quantization with calibration dataset and we propose a fine-grained data distribution alignment (FDDA) method to boost the performance of post-training quantization. The method is based on two important properties of batch normalization statistics (BNS) we observed in deep layers of the trained network, i.e., inter-class separation and intra-class incohesion. To preserve this fine-grained distribution information: 1) We calculate the per-class BNS of the calibration dataset as the BNS centers of each class and propose a BNS-centralized loss to force the synthetic data distributions of different classes to be close to their own centers. 2) We add Gaussian noise into the centers to imitate the incohesion and propose a BNS-distorted loss to force the synthetic data distribution of the same class to be close to the distorted centers. By introducing these two fine-grained losses, our method shows the state-of-the-art performance on ImageNet, especially when the first and last layers are quantized to low-bit as well. Our project is available at https://github.com/viperit/FDDA.



قيم البحث

اقرأ أيضاً

96 - Di Wu , Siyuan Li , Zelin Zang 2021
Self-supervised contrastive learning has demonstrated great potential in learning visual representations. Despite their success on various downstream tasks such as image classification and object detection, self-supervised pre-training for fine-grain ed scenarios is not fully explored. In this paper, we first point out that current contrastive methods are prone to memorizing background/foreground texture and therefore have a limitation in localizing the foreground object. Analysis suggests that learning to extract discriminative texture information and localization are equally crucial for self-supervised pre-training under fine-grained scenarios. Based on our findings, we introduce Cross-view Saliency Alignment (CVSA), a contrastive learning framework that first crops and swaps saliency regions of images as a novel view generation and then guides the model to localize on the foreground object via a cross-view alignment loss. Extensive experiments on four popular fine-grained classification benchmarks show that CVSA significantly improves the learned representation.
177 - Zhenhua Liu , Yunhe Wang , Kai Han 2021
Recently, transformer has achieved remarkable performance on a variety of computer vision applications. Compared with mainstream convolutional neural networks, vision transformers are often of sophisticated architectures for extracting powerful featu re representations, which are more difficult to be developed on mobile devices. In this paper, we present an effective post-training quantization algorithm for reducing the memory storage and computational costs of vision transformers. Basically, the quantization task can be regarded as finding the optimal low-bit quantization intervals for weights and inputs, respectively. To preserve the functionality of the attention mechanism, we introduce a ranking loss into the conventional quantization objective that aims to keep the relative order of the self-attention results after quantization. Moreover, we thoroughly analyze the relationship between quantization loss of different layers and the feature diversity, and explore a mixed-precision quantization scheme by exploiting the nuclear norm of each attention map and output feature. The effectiveness of the proposed method is verified on several benchmark models and datasets, which outperforms the state-of-the-art post-training quantization algorithms. For instance, we can obtain an 81.29% top-1 accuracy using DeiT-B model on ImageNet dataset with about 8-bit quantization.
Quantization is a key technique to reduce the resource requirement and improve the performance of neural network deployment. However, different hardware backends such as x86 CPU, NVIDIA GPU, ARM CPU, and accelerators may demand different implementati ons for quantized networks. This diversity calls for specialized post-training quantization pipelines to built for each hardware target, an engineering effort that is often too large for developers to keep up with. We tackle this problem with an automated post-training quantization framework called HAGO. HAGO provides a set of general quantization graph transformations based on a user-defined hardware specification and implements a search mechanism to find the optimal quantization strategy while satisfying hardware constraints for any model. We observe that HAGO achieves speedups of 2.09x, 1.97x, and 2.48x on Intel Xeon Cascade Lake CPUs, NVIDIA Tesla T4 GPUs, ARM Cortex-A CPUs on Raspberry Pi4 relative to full precision respectively, while maintaining the highest reported post-training quantization accuracy in each case.
Deep hashing approaches, including deep quantization and deep binary hashing, have become a common solution to large-scale image retrieval due to high computation and storage efficiency. Most existing hashing methods can not produce satisfactory resu lts for fine-grained retrieval, because they usually adopt the outputs of the last CNN layer to generate binary codes, which is less effective to capture subtle but discriminative visual details. To improve fine-grained image hashing, we propose Pyramid Hybrid Pooling Quantization (PHPQ). Specifically, we propose a Pyramid Hybrid Pooling (PHP) module to capture and preserve fine-grained semantic information from multi-level features. Besides, we propose a learnable quantization module with a partial attention mechanism, which helps to optimize the most relevant codewords and improves the quantization. Comprehensive experiments demonstrate that PHPQ outperforms state-of-the-art methods.
129 - Kang Zhao , Sida Huang , Pan Pan 2021
Researches have demonstrated that low bit-width (e.g., INT8) quantization can be employed to accelerate the inference process. It makes the gradient quantization very promising since the backward propagation requires approximately twice more computat ion than forward one. Due to the variability and uncertainty of gradient distribution, a lot of methods have been proposed to attain training stability. However, most of them ignore the channel-wise gradient distributions and the impact of gradients with different magnitudes, resulting in the degradation of final accuracy. In this paper, we propose a novel INT8 quantization training framework for convolutional neural network to address the above issues. Specifically, we adopt Gradient Vectorized Quantization to quantize the gradient, based on the observation that layer-wise gradients contain multiple distributions along the channel dimension. Then, Magnitude-aware Clipping Strategy is introduced by taking the magnitudes of gradients into consideration when minimizing the quantization error, and we present a theoretical derivation to solve the quantization parameters of different distributions. Experimental results on broad range of computer vision tasks, such as image classification, object detection and video classification, demonstrate that the proposed Distribution Adaptive INT8 Quantization training method has achieved almost lossless training accuracy for different backbones, including ResNet, MobileNetV2, InceptionV3, VGG and AlexNet, which is superior to the state-of-the-art techniques. Moreover, we further implement the INT8 kernel that can accelerate the training iteration more than 200% under the latest Turing architecture, i.e., our method excels on both training accuracy and speed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا