ترغب بنشر مسار تعليمي؟ اضغط هنا

Pyramid Hybrid Pooling Quantization for Efficient Fine-Grained Image Retrieval

176   0   0.0 ( 0 )
 نشر من قبل Jinpeng Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep hashing approaches, including deep quantization and deep binary hashing, have become a common solution to large-scale image retrieval due to high computation and storage efficiency. Most existing hashing methods can not produce satisfactory results for fine-grained retrieval, because they usually adopt the outputs of the last CNN layer to generate binary codes, which is less effective to capture subtle but discriminative visual details. To improve fine-grained image hashing, we propose Pyramid Hybrid Pooling Quantization (PHPQ). Specifically, we propose a Pyramid Hybrid Pooling (PHP) module to capture and preserve fine-grained semantic information from multi-level features. Besides, we propose a learnable quantization module with a partial attention mechanism, which helps to optimize the most relevant codewords and improves the quantization. Comprehensive experiments demonstrate that PHPQ outperforms state-of-the-art methods.



قيم البحث

اقرأ أيضاً

The high efficiency in computation and storage makes hashing (including binary hashing and quantization) a common strategy in large-scale retrieval systems. To alleviate the reliance on expensive annotations, unsupervised deep hashing becomes an impo rtant research problem. This paper provides a novel solution to unsupervised deep quantization, namely Contrastive Quantization with Code Memory (MeCoQ). Different from existing reconstruction-based strategies, we learn unsupervised binary descriptors by contrastive learning, which can better capture discriminative visual semantics. Besides, we uncover that codeword diversity regularization is critical to prevent contrastive learning-based quantization from model degeneration. Moreover, we introduce a novel quantization code memory module that boosts contrastive learning with lower feature drift than conventional feature memories. Extensive experiments on benchmark datasets show that MeCoQ outperforms state-of-the-art methods.
153 - Peng Xu , Qiyue Yin , Yongye Huang 2017
Sketch-based image retrieval (SBIR) is challenging due to the inherent domain-gap between sketch and photo. Compared with pixel-perfect depictions of photos, sketches are iconic renderings of the real world with highly abstract. Therefore, matching s ketch and photo directly using low-level visual clues are unsufficient, since a common low-level subspace that traverses semantically across the two modalities is non-trivial to establish. Most existing SBIR studies do not directly tackle this cross-modal problem. This naturally motivates us to explore the effectiveness of cross-modal retrieval methods in SBIR, which have been applied in the image-text matching successfully. In this paper, we introduce and compare a series of state-of-the-art cross-modal subspace learning methods and benchmark them on two recently released fine-grained SBIR datasets. Through thorough examination of the experimental results, we have demonstrated that the subspace learning can effectively model the sketch-photo domain-gap. In addition we draw a few key insights to drive future research.
Deep Convolutional Neural Network (DCNN) and Transformer have achieved remarkable successes in image recognition. However, their performance in fine-grained image recognition is still difficult to meet the requirements of actual needs. This paper pro poses a Sequence Random Network (SRN) to enhance the performance of DCNN. The output of DCNN is one-dimensional features. This one-dimensional feature abstractly represents image information, but it does not express well the detailed information of image. To address this issue, we use the proposed SRN which composed of BiLSTM and several Tanh-Dropout blocks (called BiLSTM-TDN), to further process DCNN one-dimensional features for highlighting the detail information of image. After the feature transform by BiLSTM-TDN, the recognition performance has been greatly improved. We conducted the experiments on six fine-grained image datasets. Except for FGVC-Aircraft, the accuracies of the proposed methods on the other datasets exceeded 99%. Experimental results show that BiLSTM-TDN is far superior to the existing state-of-the-art methods. In addition to DCNN, BiLSTM-TDN can also be extended to other models, such as Transformer.
Retrieving content relevant images from a large-scale fine-grained dataset could suffer from intolerably slow query speed and highly redundant storage cost, due to high-dimensional real-valued embeddings which aim to distinguish subtle visual differe nces of fine-grained objects. In this paper, we study the novel fine-grained hashing topic to generate compact binary codes for fine-grained images, leveraging the search and storage efficiency of hash learning to alleviate the aforementioned problems. Specifically, we propose a unified end-to-end trainable network, termed as ExchNet. Based on attention mechanisms and proposed attention constraints, it can firstly obtain both local and global features to represent object parts and whole fine-grained objects, respectively. Furthermore, to ensure the discriminative ability and semantic meanings consistency of these part-level features across images, we design a local feature alignment approach by performing a feature exchanging operation. Later, an alternative learning algorithm is employed to optimize the whole ExchNet and then generate the final binary hash codes. Validated by extensive experiments, our proposal consistently outperforms state-of-the-art generic hashing methods on five fine-grained datasets, which shows our effectiveness. Moreover, compared with other approximate nearest neighbor methods, ExchNet achieves the best speed-up and storage reduction, revealing its efficiency and practicality.
Product Quantization (PQ) has long been a mainstream for generating an exponentially large codebook at very low memory/time cost. Despite its success, PQ is still tricky for the decomposition of high-dimensional vector space, and the retraining of mo del is usually unavoidable when the code length changes. In this work, we propose a deep progressive quantization (DPQ) model, as an alternative to PQ, for large scale image retrieval. DPQ learns the quantization codes sequentially and approximates the original feature space progressively. Therefore, we can train the quantization codes with different code lengths simultaneously. Specifically, we first utilize the label information for guiding the learning of visual features, and then apply several quantization blocks to progressively approach the visual features. Each quantization block is designed to be a layer of a convolutional neural network, and the whole framework can be trained in an end-to-end manner. Experimental results on the benchmark datasets show that our model significantly outperforms the state-of-the-art for image retrieval. Our model is trained once for different code lengths and therefore requires less computation time. Additional ablation study demonstrates the effect of each component of our proposed model. Our code is released at https://github.com/cfm-uestc/DPQ.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا