ترغب بنشر مسار تعليمي؟ اضغط هنا

Consistency of Planck, ACT and SPT constraints on magnetically assisted recombination and forecasts for future experiments

351   0   0.0 ( 0 )
 نشر من قبل Silvia Galli
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Primordial magnetic fields can change the recombination history of the universe by inducing clumping in the baryon density at small scales. They were recently proposed as a candidate model to relieve the Hubble tension. We investigate the consistency of the constraints on a clumping factor parameter $b$ in a simplistic model, using the latest CMB data from Planck, ACT DR4 and SPT-3G 2018. For the combined CMB data alone, we find no evidence for clumping being different from zero, though when adding a prior on $H_0$ based on the latest distance-ladder analysis of the SH0ES team, we report a weak detection of $b$. Our analysis of simulated datasets shows that ACT DR4 has more constraining power with respect to SPT-3G 2018 due to the degeneracy breaking power of the TT band powers (not included in SPT). Simulations also suggest that the TE,EE power spectra of the two datasets should have the same constraining power. However, the ACT DR4 TE,EE constraint is tighter than expectations, while the SPT-3G 2018 one is looser. While this is compatible with statistical fluctuations, we explore systematic effects which may account for such deviations. Overall, the ACT results are only marginally consistent with Planck or SPT-3G, at the $2-3sigma$ level within $Lambda$CDM+$b$ and $Lambda$CDM, while Planck and SPT-3G are in good agreement. Combining the CMB data together with BAO and SNIa provides an upper limit of b<0.4 at 95% c.l. (b<0.5 without ACT). Adding a SH0ES-based prior on the Hubble constant gives $b = 0.31^{+0.11}_{-0.15}$ and $H_0=69.28 pm 0.56$ km/s/Mpc ($b = 0.41^{+0.14}_{-018}$ and $H_0=69.70 pm 0.63$ km/s/Mpc without ACT). Finally, we forecast constraints on $b$ for the full SPT-3G survey, Simons Observatory, and CMB-S4, finding improvements by factors of 1.5 (2.7 with Planck), 5.9 and 7.8, respectively, over Planck alone.



قيم البحث

اقرأ أيضاً

The Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT) have recently provided new and precise measurements of the Cosmic Microwave Background anisotropy damping tail. This region of the CMB angular spectra, thanks to the angular dis tortions produced by gravitational lensing, can probe the growth of matter perturbations and provide a test for general relativity. Here we make use of the ACT and SPT power spectrum measurements (combined with the recent WMAP9 data) to constrain f(R) gravity theories. Adopting a parametrized approach, we obtain an upper limit on the lengthscale of the theory of B_0 < 0.86 at 95% c.l. from ACT, while we get a significantly stronger bound from SPT with B_0 < 0.14 at 95% c.l..
The overall cosmological parameter tension between the Atacama Cosmology Telescope 2020 (ACT) and Planck 2018 data within the concordance cosmological model is quantified using the suspiciousness statistic to be 2.6$sigma$. Between ACT and the South Pole Telescope (SPT) we find a tension of 2.4$sigma$, and 2.8$sigma$ between ACT and Planck+SPT combined. While it is unclear whether the tension is caused by statistical fluctuations, systematic effects or new physics, caution should be exercised in combining these cosmic microwave background datasets in the context of the $Lambda$CDM standard model of the universe.
The lack of power anomaly is an intriguing feature at the largest angular scales of the CMB anisotropy temperature pattern, whose statistical significance is not strong enough to claim any new physics beyond the standard cosmological model. We revisi t the former statement by also considering polarisation data. We propose a new one-dimensional estimator which takes jointly into account the information contained in the TT, TE and EE CMB spectra. By employing this estimator on Planck 2015 low-$ell$ data, we find that a random $Lambda$CDM realisation is statistically accepted at the level of $3.68 %$. Even though Planck polarisation contributes a mere $4 %$ to the total information budget, its use pushes the lower-tail-probability down from the $7.22 %$ obtained with only temperature data. Forecasts of future CMB polarised measurements, as e.g. the LiteBIRD satellite, can increase the polarisation contribution up to $6$ times with respect to Planck at low-$ell$. We argue that the large-scale E-mode polarisation may play an important role in analysing CMB temperature anomalies with future mission.
The Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT) have recently provided new, very precise measurements of the cosmic microwave background (CMB) anisotropy damping tail. The values of the cosmological parameters inferred from t hese measurements, while broadly consistent with the expectations of the standard cosmological model, are providing interesting possible indications for new physics that are definitely worth of investigation. The ACT results, while compatible with the standard expectation of three neutrino families, indicate a level of CMB lensing, parametrized by the lensing amplitude parameter A_L, that is about 70% higher than expected. If not a systematic, this anomalous lensing amplitude could be produced by modifications of general relativity or coupled dark energy. Vice-versa, the SPT experiment, while compatible with a standard level of CMB lensing, prefers an excess of dark radiation, parametrized by the effective number of relativistic degrees of freedom N_eff. Here we perform a new analysis of these experiments allowing simultaneous variations in both these, non-standard, parameters. We also combine these experiments, for the first time in the literature, with the recent WMAP9 data, one at a time. Including the Hubble Space Telescope (HST) prior on the Hubble constant and information from baryon acoustic oscillations (BAO) surveys provides the following constraints from ACT: N_eff=3.23pm0.47, A_L=1.65pm0.33 at 68% c.l., while for SPT we have N_eff=3.76pm0.34, A_L=0.81pm0.12 at 68% c.l.. In particular, the A_L estimates from the two experiments, even when a variation in N_eff is allowed, are in tension at more than 95% c.l..
We present new, tight, constraints on the cosmological background of gravitational waves (GWs) using the latest measurements of CMB temperature and polarization anisotropies provided by the Planck, BICEP2 and Keck Array experiments. These constraints are further improved when the GW contribution $N^{rm GW}_{rm eff}$ to the effective number of relativistic degrees of freedom $N_{rm eff}$ is also considered. Parametrizing the tensor spectrum as a power law with tensor-to-scalar ratio $r$, tilt $n_mathrm{t}$ and pivot $0.01,mathrm{Mpc}^{-1}$, and assuming a minimum value of $r=0.001$, we find $r < 0.089$, $n_mathrm{t} = 1.7^{+2.1}_{-2.0}$ ($95%,mathrm{CL}$, no $N^{rm GW}_{rm eff}$) and $r < 0.082$, $n_mathrm{t} = -0.05^{+0.58}_{-0.87}$ ($95%,mathrm{CL}$, with $N^{rm GW}_{rm eff}$). When the recently released $95,mathrm{GHz}$ data from Keck Array are added to the analysis, the constraints on $r$ are improved to $r < 0.067$ ($95%,mathrm{CL}$, no $N^{rm GW}_{rm eff}$), $r < 0.061$ ($95%,mathrm{CL}$, with $N^{rm GW}_{rm eff}$). We discuss the limits coming from direct detection experiments such as LIGO-Virgo, pulsar timing (European Pulsar Timing Array) and CMB spectral distortions (FIRAS). Finally, we show future constraints achievable from a COrE-like mission: if the tensor-to-scalar ratio is of order $10^{-2}$ and the inflationary consistency relation $n_mathrm{t} = -r/8$ holds, COrE will be able to constrain $n_mathrm{t}$ with an error of $0.16$ at $95%,mathrm{CL}$. In the case that lensing $B$-modes can be subtracted to $10%$ of their power, a feasible goal for COrE, these limits will be improved to $0.11$ at $95%,mathrm{CL}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا