ﻻ يوجد ملخص باللغة العربية
We study the multipartite quantum correlation (MQC) in a quantum transverse Ising model with the tunable triangular configuration. It is found that the anisotropic coupling can modulate the MQC in the frustrated phase and the MQC combined with its susceptibility can distinguish the frustrated and the nonfrustrated regimes in the ground state. Furthermore, we analyze the correlation properties at finite temperatures, where the MQC in the nonfrustrated phase is high at zero temperature but thermally fragile, which stems from the competition of the eigenvectors in the thermal state. Interestingly, in the frustrated phase, there is a trade-off relation between high quantum correlation and strong thermal robustness by tuning the anisotropic interactions, where the MQC can attain to a relatively higher value and have the well robustness to temperature at the same time. In addition, an experimental scheme for the MQC modulation via anisotropic coupling is discussed in the system of cold atoms trapped in an optical lattice.
Certain quantum states are well-known to be particularly fragile in the presence of decoherence, as illustrated by Schrodingers famous gedanken cat experiment. It has been better appreciated more recently that quantum states can be characterized in a
We review some concepts and properties of quantum correlations, in particular multipartite measures, geometric measures and monogamy relations. We also discuss the relation between classical and total correlations
We investigate the creation and control of emergent collective behavior and quantum correlations using feedback in an emitter-waveguide system using a minimal model. Employing homodyne detection of photons emitted from a laser-driven emitter ensemble
We consider a multipartite system consisting of two noninteracting qubits each embedded in a single-mode leaky cavity, in turn connected to an external bosonic reservoir. Initially, we take the two qubits in an entangled state while the cavities and
In recent years, the use of information principles to understand quantum correlations has been very successful. Unfortunately, all principles considered so far have a bipartite formulation, but intrinsically multipartite principles, yet to be discove