ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics and extraction of quantum discord in a multipartite open system

212   0   0.0 ( 0 )
 نشر من قبل Rosario Lo Franco
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a multipartite system consisting of two noninteracting qubits each embedded in a single-mode leaky cavity, in turn connected to an external bosonic reservoir. Initially, we take the two qubits in an entangled state while the cavities and the reservoirs have zero photons. We investigate, in this six-partite quantum system, the transfer of quantum discord from the qubits to the cavities and reservoirs. We show that this transfer occurs also when the cavities are not entangled. Moreover, we discuss how quantum discord can be extracted from the cavities and transferred to distant systems by traveling leaking photons, using the input-output theory.



قيم البحث

اقرأ أيضاً

We investigate the link between information and thermodynamics embodied by Landauers principle in the open dynamics of a multipartite quantum system. Such irreversible dynamics is described in terms of a collisional model with a finite temperature re servoir. We demonstrate that Landauers principle holds, for such a configuration, in a form that involves the flow of heat dissipated into the environment and the rate of change of the entropy of the system. Quite remarkably, such a principle for {it heat and entropy power} can be explicitly linked to the rate of creation of correlations among the elements of the multipartite system and, in turn, the non-Markovian nature of their reduced evolution. Such features are illustrated in two exemplary cases.
Quantum discord is a measure of non-classical correlations, which are excess correlations inherent in quantum states that cannot be accessed by classical measurements. For multipartite states, the classically accessible correlations can be defined by the mutual information of the multipartite measurement outcomes. In general the quantum discord of an arbitrary quantum state involves an optimisation of over the classical measurements which is hard to compute. In this paper, we examine the quantum discord in the experimentally relevant case when the quantum states are Gaussian and the measurements are restricted to Gaussian measurements. We perform the optimisation over the measurements to find the Gaussian discord of the bipartite EPR state and tripartite GHZ state in the presence of different types of noise: uncorrelated noise, multiplicative noise and correlated noise. We find that by adding uncorrelated noise and multiplicative noise, the quantum discord always decreases. However, correlated noise can either increase or decrease the quantum discord. We also find that for low noise, the optimal classical measurements are single quadrature measurements. As the noise increases, a dual quadrature measurement becomes optimal.
86 - Bassano Vacchini 2016
We consider the description of quantum noise within the framework of the standard Copenhagen interpretation of quantum mechanics applied to a composite system environment setting. Averaging over the environmental degrees of freedom leads to a stochas tic quantum dynamics, described by equations complying with the constraints arising from the statistical structure of quantum mechanics. Simple examples are considered in the framework of open system dynamics described within a master equation approach, pointing in particular to the appearance of the phenomenon of decoherence and to the relevance of quantum correlation functions of the environment in the determination of the action of quantum noise.
125 - Bassano Vacchini 2019
We briefly examine recent developments in the field of open quantum system theory, devoted to the introduction of a satisfactory notion of memory for a quantum dynamics. In particular, we will consider a possible formalization of the notion of non-Ma rkovian dynamics, as well as the construction of quantum evolution equations featuring a memory kernel. Connections will be drawn to the corresponding notions in the framework of classical stochastic processes, thus pointing to the key differences between a quantum and classical formalization of the notion of memory effects.
A symmetric measure of quantum correlation based on the Hilbert-Schmidt distance is presented in this paper. For two-qubit states, we simplify considerably the optimization procedure so that numerical evaluation can be performed efficiently. Analytic al expressions for the quantum correlation are attained for some special states. We further investigate the dynamics of quantum correlation of the system qubits in the presence of independent dissipative environments. Several nontrivial aspects are demonstrated. We find that the quantum correlation can increase even if the system state is suffering dissipative noise. Sudden changes occur, even twice, in the time evolution of quantum correlation. There is certain correspondence between the evolution of quantum correlation in the systems and that in the environments, and the quantum correlation in the systems will be transferred into the environments completely and asymptotically.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا