ترغب بنشر مسار تعليمي؟ اضغط هنا

Engineering entangled photons for transmission in ring-core optical fibers

340   0   0.0 ( 0 )
 نشر من قبل Stephen Walborn
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The capacity of optical communication channels can be increased by space division multiplexing in structured optical fibers. Radial core optical fibers allows for the propagation of twisted light--eigenmodes of orbital angular momentum, which have attracted considerable attention for high-dimensional quantum information. Here we study the generation of entangled photons that are tailor-made for coupling into ring core optical fibers. We show that the coupling of photon pairs produced by parametric down-conversion can be increased by close to a factor of three by pumping the non-linear crystal with a perfect vortex mode with orbital angular momentum $ell$, rather than a gaussian mode. Moreover, the two-photon orbital angular momentum spectrum has a nearly constant shape. This provides an interesting scenario for quantum state engineering, as pumping the crystal with a superposition of perfect vortex modes can be used in conjunction with the mode filtering properties of the ring core fiber to produce simple and interesting quantum states.



قيم البحث

اقرأ أيضاً

We present a consistent multimode theory that describes the coupling of single photons generated by collinear Type-I parametric down-conversion into single-mode optical fibers. We have calculated an analytic expression for the fiber diameter which ma ximizes the pair photon count rate. For a given focal length and wavelength, a lower limit of the fiber diameter for satisfactory coupling is obtained.
Quantum frequency combs from chip-scale integrated sources are promising candidates for scalable and robust quantum information processing (QIP). However, to use these quantum combs for frequency domain QIP, demonstration of entanglement in the frequ ency basis, showing that the entangled photons are in a coherent superposition of multiple frequency bins, is required. We present a verification of qubit and qutrit frequency-bin entanglement using an on-chip quantum frequency comb with 40 mode pairs, through a two-photon interference measurement that is based on electro-optic phase modulation. Our demonstrations provide an important contribution in establishing integrated optical microresonators as a source for high-dimensional frequency-bin encoded quantum computing, as well as dense quantum key distribution.
68 - C. Altuzarra , A. Lyons , G. Yuan 2018
Plasmonics and metamaterials have recently been shown to allow the control and interaction with non-classical states of light, a rather counterintuitive finding given the high losses typically encountered in these systems. Here, we demonstrate a rang e of functionalities that are allowed with correlated and entangled photons that are used to illuminate multiple, overlaid patterns on plasmonic metasurfaces. Correlated photons allow to nonlocally determine the pattern that is imaged or, alternatively to un-scramble an image that is otherwise blurred. Entangled photons allow a more important functionality whereby the images imprinted on the metasurface are individually visible only when illuminated with one of the entangled photons. Correlated single photon imaging of functional metasurfaces could therefore promise advances towards the use of nanostructured subwavelength thin devices in quantum information protocols.
342 - Paul G. Kwiat 1998
Using the process of spontaneous parametric down conversion in a novel two-crystal geometry, one can generate a source of polarization-entangled photon pairs which is orders of magnitude brighter than previous sources. We have measured a high level o f entanglement between photons emitted over a relatively large collection angle, and over a 10-nm bandwidth. As a demonstration of the source intensity, we obtained a 242-$sigma$ violation of Bells inequalities in less than three minutes.
We demonstrate theoretically and experimentally a high level of control of the four-wave mixing process in an inert gas filled inhibited-coupling guiding hollow-core photonic crystal fiber in order to generate photon pairs. The specific multiple-bran ch dispersion profile in such fibers allows both entangled and separable bi-photon states to be produced. By controlling the choice of gas, its pressure and the fiber length, we experimentally generate various joint spectral intensity profiles in a stimulated regime that is transferable to the spontaneous regime. The generated profiles cover both spectrally separable and entangled bi-photons and feature frequency tuning over 17 THz, demonstrating the large dynamic control offered by such a photon pair source.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا