ترغب بنشر مسار تعليمي؟ اضغط هنا

High-dimensional frequency-bin entangled photons in an optical microresonator on a chip

354   0   0.0 ( 0 )
 نشر من قبل Poolad Imany
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum frequency combs from chip-scale integrated sources are promising candidates for scalable and robust quantum information processing (QIP). However, to use these quantum combs for frequency domain QIP, demonstration of entanglement in the frequency basis, showing that the entangled photons are in a coherent superposition of multiple frequency bins, is required. We present a verification of qubit and qutrit frequency-bin entanglement using an on-chip quantum frequency comb with 40 mode pairs, through a two-photon interference measurement that is based on electro-optic phase modulation. Our demonstrations provide an important contribution in establishing integrated optical microresonators as a source for high-dimensional frequency-bin encoded quantum computing, as well as dense quantum key distribution.



قيم البحث

اقرأ أيضاً

Resonant excitation of the biexciton state in an InAsP quantum dot by a phase-coherent pair of picosecond pulses allows for preparing time-bin entangled pairs of photons via the biexciton-exciton cascade. We show that this scheme can be efficiently i mplemented for a dot embedded in an InP nanowire. The underlying physical mechanisms can be represented and quantitatively analyzed by an effective three-level open system master equation. Simulation parameters including decay and intensity depending dephasing rates are extracted from experimental data, which in turn allow for predicting the resulting entanglement and finding optimal operating conditions.
Long distance quantum communication is one of the prime goals in the field of quantum information science. With information encoded in the quantum state of photons, existing telecommunication fiber networks can be effectively used as a transport medi um. To achieve this goal, a source of robust entangled single photon pairs is required. While time-bin entanglement offers the required robustness, currently used parametric down-conversion sources have limited performance due to multi-pair contributions. We report the realization of a source of single time-bin entangled photon pairs utilizing the biexciton-exciton cascade in a III/V self-assembled quantum dot. We analyzed the generated photon pairs by an inherently phase-stable interferometry technique, facilitating uninterrupted long integration times. We confirmed the entanglement by performing a quantum state tomography of the emitted photons, which yielded a fidelity of 0.69(3) and a concurrence of 0.41(6).
Time-bin entangled photons are ideal for long-distance quantum communication via optical fibers. Here we present a source where, even at high creation rates, each excitation pulse generates at most one time-bin entangled pair. This is important for t he accuracy and security of quantum communication. Our site-controlled quantum dot generates single polarization-entangled photon pairs, which are then converted, without loss of entanglement strength, into single time-bin entangled photon pairs.
High-dimensional entangled photons are a key resource for advanced quantum information processing. Efficient processing of high-dimensional entangled photons requires the ability to synthesize their state using general unitary transformations. The le ading technology for processing photons in high-dimensions is integrated multiport interferometers. However, such devices are incompatible with free-space and fiber-based systems, and their architecture poses significant scaling challenges. Here we unlock these limitations by demonstrating a reconfigurable processor of entangled photons that is based on multi-plane light conversion (MPLC), a technology that was recently developed for multiplexing hundreds of spatial modes for classical free-space and fiber communication. To demonstrate the flexibility of MPLC, we perform four key tasks of quantum information processing using the same MPLC hardware: entanglement certification, tailored two-photon interference, arbitrary state transformations, and mode conversion. Based on the high degree of control we obtain, we expect MPLC will become a leading platform for future quantum technologies.
We demonstrate a different scheme to perform optical sectioning of a sample based on the concept of induced coherence [Zou et al., Phys. Rev. Lett. 67, 318 (1991)]. This can be viewed as a different type of optical coherence tomography scheme where t he varying reflectivity of the sample along the direction of propagation of an optical beam translates into changes of the degree of first-order coherence between two beams. As a practical advantage the scheme allows probing the sample with one wavelength and measuring photons with another wavelength. In a bio-imaging scenario, this would result in a deeper penetration into the sample because of probing with longer wavelengths, while still using the optimum wavelength for detection. The scheme proposed here could achieve submicron axial resolution by making use of nonlinear parametric sources with broad spectral bandwidth emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا