ﻻ يوجد ملخص باللغة العربية
While deep neural networks have achieved remarkable success in various computer vision tasks, they often fail to generalize to new domains and subtle variations of input images. Several defenses have been proposed to improve the robustness against these variations. However, current defenses can only withstand the specific attack used in training, and the models often remain vulnerable to other input variations. Moreover, these methods often degrade performance of the model on clean images and do not generalize to out-of-domain samples. In this paper we present Generative Adversarial Training, an approach to simultaneously improve the models generalization to the test set and out-of-domain samples as well as its robustness to unseen adversarial attacks. Instead of altering a low-level pre-defined aspect of images, we generate a spectrum of low-level, mid-level and high-level changes using generative models with a disentangled latent space. Adversarial training with these examples enable the model to withstand a wide range of attacks by observing a variety of input alterations during training. We show that our approach not only improves performance of the model on clean images and out-of-domain samples but also makes it robust against unforeseen attacks and outperforms prior work. We validate effectiveness of our method by demonstrating results on various tasks such as classification, segmentation and object detection.
Learning rate, batch size and momentum are three important hyperparameters in the SGD algorithm. It is known from the work of Jastrzebski et al. arXiv:1711.04623 that large batch size training of neural networks yields models which do not generalize
Deep neural networks are vulnerable to adversarial examples, which becomes one of the most important research problems in the development of deep learning. While a lot of efforts have been made in recent years, it is of great significance to perform
Adversarial training can considerably robustify deep neural networks to resist adversarial attacks. However, some works suggested that adversarial training might comprise the privacy-preserving and generalization abilities. This paper establishes and
Standard adversarial attacks change the predicted class label of a selected image by adding specially tailored small perturbations to its pixels. In contrast, a universal perturbation is an update that can be added to any image in a broad class of im
Deep neural networks have been shown to be susceptible to adversarial examples -- small, imperceptible changes constructed to cause mis-classification in otherwise highly accurate image classifiers. As a practical alternative, recent work proposed so