ﻻ يوجد ملخص باللغة العربية
Standard adversarial attacks change the predicted class label of a selected image by adding specially tailored small perturbations to its pixels. In contrast, a universal perturbation is an update that can be added to any image in a broad class of images, while still changing the predicted class label. We study the efficient generation of universal adversarial perturbations, and also efficient methods for hardening networks to these attacks. We propose a simple optimization-based universal attack that reduces the top-1 accuracy of various network architectures on ImageNet to less than 20%, while learning the universal perturbation 13X faster than the standard method. To defend against these perturbations, we propose universal adversarial training, which models the problem of robust classifier generation as a two-player min-max game, and produces robust models with only 2X the cost of natural training. We also propose a simultaneous stochastic gradient method that is almost free of extra computation, which allows us to do universal adversarial training on ImageNet.
Deep neural networks have been shown to be susceptible to adversarial examples -- small, imperceptible changes constructed to cause mis-classification in otherwise highly accurate image classifiers. As a practical alternative, recent work proposed so
While deep neural networks have achieved remarkable success in various computer vision tasks, they often fail to generalize to new domains and subtle variations of input images. Several defenses have been proposed to improve the robustness against th
Learning rate, batch size and momentum are three important hyperparameters in the SGD algorithm. It is known from the work of Jastrzebski et al. arXiv:1711.04623 that large batch size training of neural networks yields models which do not generalize
Recent advances in autoencoders and generative models have given rise to effective video forgery methods, used for generating so-called deepfakes. Mitigation research is mostly focused on post-factum deepfake detection and not on prevention. We compl
Given a state-of-the-art deep neural network classifier, we show the existence of a universal (image-agnostic) and very small perturbation vector that causes natural images to be misclassified with high probability. We propose a systematic algorithm