ﻻ يوجد ملخص باللغة العربية
As a potential technology feature for 6G wireless networks, the idea of sensing-communication integration requires the system not only to complete reliable multi-user communication but also to achieve accurate environment sensing. In this paper, we consider such a joint communication and sensing (JCAS) scenario, in which multiple users use the sparse code multiple access (SCMA) scheme to communicate with the wireless access point (AP). Part of the user signals are scattered by the environment object and reflected by an intelligent reflective surface (IRS) before they arrive at the AP. We exploit the sparsity of both the structured user signals and the unstructured environment and propose an iterative and incremental joint multi-user communication and environment sensing scheme, in which the two processes, i.e., multi-user information detection and environment object detection, interweave with each other thanks to their intrinsic mutual dependence. The proposed algorithm is sliding-window based and also graph based, which can keep on sensing the environment as long as there are illuminating user signals. The trade-off relationship between the key system parameters is analyzed, and the simulation result validates the convergence and effectiveness of the proposed algorithm.
Joint communication and radar sensing (JCR) represents an emerging research field aiming to integrate the above two functionalities into a single system, sharing a majority of hardware and signal processing modules and, in a typical case, sharing a s
Mobile network is evolving from a communication-only network towards the one with joint communication and radio/radar sensing (JCAS) capabilities, that we call perceptive mobile network (PMN). Radio sensing here refers to information retrieval from r
Beamforming has great potential for joint communication and sensing (JCAS), which is becoming a demanding feature on many emerging platforms such as unmanned aerial vehicles and smart cars. Although beamforming has been extensively studied for commun
For massive machine-type communications, centralized control may incur a prohibitively high overhead. Grant-free non-orthogonal multiple access (NOMA) provides possible solutions, yet poses new challenges for efficient receiver design. In this paper,
6G will likely be the first generation of mobile communication that will feature tight integration of localization and sensing with communication functionalities. Among several worldwide initiatives, the Hexa-X flagship project stands out as it bring