ﻻ يوجد ملخص باللغة العربية
For massive machine-type communications, centralized control may incur a prohibitively high overhead. Grant-free non-orthogonal multiple access (NOMA) provides possible solutions, yet poses new challenges for efficient receiver design. In this paper, we develop a joint user identification, channel estimation, and signal detection (JUICESD) algorithm. We divide the whole detection scheme into two modules: slot-wise multi-user detection (SMD) and combined signal and channel estimation (CSCE). SMD is designed to decouple the transmissions of different users by leveraging the approximate message passing (AMP) algorithms, and CSCE is designed to deal with the nonlinear coupling of activity state, channel coefficient and transmit signal of each user separately. To address the problem that the exact calculation of the messages exchanged within CSCE and between the two modules is complicated due to phase ambiguity issues, this paper proposes a rotationally invariant Gaussian mixture (RIGM) model, and develops an efficient JUICESD-RIGM algorithm. JUICESD-RIGM achieves a performance close to JUICESD with a much lower complexity. Capitalizing on the feature of RIGM, we further analyze the performance of JUICESD-RIGM with state evolution techniques. Numerical results demonstrate that the proposed algorithms achieve a significant performance improvement over the existing alternatives, and the derived state evolution method predicts the system performance accurately.
In the massive machine-type communication (mMTC) scenario, a large number of devices with sporadic traffic need to access the network on limited radio resources. While grant-free random access has emerged as a promising mechanism for massive access,
This paper addresses the problem of joint downlink channel estimation and user grouping in massive multiple-input multiple-output (MIMO) systems, where the motivation comes from the fact that the channel estimation performance can be improved if we e
Universal filtered multi-carrier (UFMC), which groups and filters subcarriers before transmission, is a potential multi-carrier modulation technique investigated for the emerging Machine-Type Communications (MTC). Considering the relaxed timing synch
This paper considers crowded massive multiple input multiple output (MIMO) communications over a Rician fading channel, where the number of users is much greater than the number of available pilot sequences. A joint user identification and line-of-si
With recent advances on the dense low-earth orbit (LEO) constellation, LEO satellite network has become one promising solution to providing global coverage for Internet-of-Things (IoT) services. Confronted with the sporadic transmission from randomly