ﻻ يوجد ملخص باللغة العربية
Distributed Stream Processing systems are becoming an increasingly essential part of Big Data processing platforms as users grow ever more reliant on their ability to provide fast access to new results. As such, making timely decisions based on these results is dependent on a systems ability to tolerate failure. Typically, these systems achieve fault tolerance and the ability to recover automatically from partial failures by implementing checkpoint and rollback recovery. However, owing to the statistical probability of partial failures occurring in these distributed environments and the variability of workloads upon which jobs are expected to operate, static configurations will often not meet Quality of Service constraints with low overhead. In this paper we present Khaos, a new approach which utilizes the parallel processing capabilities of virtual cloud automation technologies for the automatic runtime optimization of fault tolerance configurations in Distributed Stream Processing jobs. Our approach employs three subsequent phases which borrows from the principles of Chaos Engineering: establish the steady-state processing conditions, conduct experiments to better understand how the system performs under failure, and use this knowledge to continuously minimize Quality of Service violations. We implemented Khaos prototypically together with Apache Flink and demonstrate its usefulness experimentally.
The Internet of Things describes a network of physical devices interacting and producing vast streams of sensor data. At present there are a number of general challenges which exist while developing solutions for use cases involving the monitoring an
Distributed Stream Processing (DSP) systems enable processing large streams of continuous data to produce results in near to real time. They are an essential part of many data-intensive applications and analytics platforms. The rate at which events a
Fine tuning distributed systems is considered to be a craftsmanship, relying on intuition and experience. This becomes even more challenging when the systems need to react in near real time, as streaming engines have to do to maintain pre-agreed serv
We study the problem of load balancing in distributed stream processing engines, which is exacerbated in the presence of skew. We introduce Partial Key Grouping (PKG), a new stream partitioning scheme that adapts the classical power of two choices to
The International Telecommunication Union (ITU) Regional Radio Conference (RRC06) established in 2006 a new frequency plan for the introduction of digital broadcasting in European, African, Arab, CIS countries and Iran. The preparation of the plan in