ترغب بنشر مسار تعليمي؟ اضغط هنا

Dependable Distributed Computing for the International Telecommunication Union Regional Radio Conference RRC06

109   0   0.0 ( 0 )
 نشر من قبل Andrea Manara
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The International Telecommunication Union (ITU) Regional Radio Conference (RRC06) established in 2006 a new frequency plan for the introduction of digital broadcasting in European, African, Arab, CIS countries and Iran. The preparation of the plan involved complex calculations under short deadline and required dependable and efficient computing capability. The ITU designed and deployed in-situ a dedicated PC farm, in parallel to the European Organization for Nuclear Research (CERN) which provided and supported a system based on the EGEE Grid. The planning cycle at the RRC06 required a periodic execution in the order of 200,000 short jobs, using several hundreds of CPU hours, in a period of less than 12 hours. The nature of the problem required dynamic workload-balancing and low-latency access to the computing resources. We present the strategy and key technical choices that delivered a reliable service to the RRC06.



قيم البحث

اقرأ أيضاً

Fast Abstracts are short presentations of work in progress or opinion pieces and aim to serve as a rapid and flexible mechanism to (i) Report on current work that may or may not be complete; (ii) Introduce new ideas to the community; (iii) State posi tions on controversial issues or open problems. On the other hand, the goal of the Student Forum is to encourage students to attend EDCC and present their work, exchange ideas with researchers and practitioners, and get early feedback on their research efforts.
Distributed Stream Processing systems are becoming an increasingly essential part of Big Data processing platforms as users grow ever more reliant on their ability to provide fast access to new results. As such, making timely decisions based on these results is dependent on a systems ability to tolerate failure. Typically, these systems achieve fault tolerance and the ability to recover automatically from partial failures by implementing checkpoint and rollback recovery. However, owing to the statistical probability of partial failures occurring in these distributed environments and the variability of workloads upon which jobs are expected to operate, static configurations will often not meet Quality of Service constraints with low overhead. In this paper we present Khaos, a new approach which utilizes the parallel processing capabilities of virtual cloud automation technologies for the automatic runtime optimization of fault tolerance configurations in Distributed Stream Processing jobs. Our approach employs three subsequent phases which borrows from the principles of Chaos Engineering: establish the steady-state processing conditions, conduct experiments to better understand how the system performs under failure, and use this knowledge to continuously minimize Quality of Service violations. We implemented Khaos prototypically together with Apache Flink and demonstrate its usefulness experimentally.
This paper shows for the first time that distributed computing can be both reliable and efficient in an environment that is both highly dynamic and hostile. More specifically, we show how to maintain clusters of size $O(log N)$, each containing more than two thirds of honest nodes with high probability, within a system whose size can vary textit{polynomially} with respect to its initial size. Furthermore, the communication cost induced by each node arrival or departure is polylogarithmic with respect to $N$, the maximal size of the system. Our clustering can be achieved despite the presence of a Byzantine adversary controlling a fraction $bad leq {1}{3}-epsilon$ of the nodes, for some fixed constant $epsilon > 0$, independent of $N$. So far, such a clustering could only be performed for systems who size can vary constantly and it was not clear whether that was at all possible for polynomial variances.
Master-worker distributed computing systems use task replication in order to mitigate the effect of slow workers, known as stragglers. Tasks are grouped into batches and assigned to one or more workers for execution. We first consider the case when t he batches do not overlap and, using the results from majorization theory, show that, for a general class of workers service time distributions, a balanced assignment of batches to workers minimizes the average job compute time. We next show that this balanced assignment of non-overlapping batches achieves lower average job compute time compared to the overlapping schemes proposed in the literature. Furthermore, we derive the optimum redundancy level as a function of the service time distribution at workers. We show that the redundancy level that minimizes average job compute time is not necessarily the same as the redundancy level that maximizes the predictability of job compute time, and thus there exists a trade-off between optimizing the two metrics. Finally, by running experiments on Google cluster traces, we observe that redundancy can reduce the compute time of the jobs in Google clusters by an order of magnitude, and that the optimum level of redundancy depends on the distribution of tasks service time.
The LOCAL model is among the main models for studying locality in the framework of distributed network computing. This model is however subject to pertinent criticisms, including the facts that all nodes wake up simultaneously, perform in lock steps, and are failure-free. We show that relaxing these hypotheses to some extent does not hurt local computing. In particular, we show that, for any construction task $T$ associated to a locally checkable labeling (LCL), if $T$ is solvable in $t$ rounds in the LOCAL model, then $T$ remains solvable in $O(t)$ rounds in the asynchronous LOCAL model. This improves the result by Casta~neda et al. [SSS 2016], which was restricted to 3-coloring the rings. More generally, the main contribution of this paper is to show that, perhaps surprisingly, asynchrony and failures in the computations do not restrict the power of the LOCAL model, as long as the communications remain synchronous and failure-free.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا