ﻻ يوجد ملخص باللغة العربية
We describe the long time behavior of small non-smooth solutions to the nonlinear Klein-Gordon equations on the sphere S^2. More precisely, we prove that the low harmonic energies (also called super-actions) are almost preserved for times of order $epsilon$^--r , where r >> 1 is an arbitrarily large number and $epsilon$ << 1 is the norm of the initial datum in the energy space H^1 x L^2. Roughly speaking, it means that, in order to exchange energy, modes have to oscillate at the same frequency. The proof relies on new multilinear estimates on Hamiltonian vector fields to put the system in Birkhoff normal form. They are derived from new probabilistic bounds on products of Laplace eigenfunctions that we obtain using Levys concentration inequality.
On the three dimensional Euclidean space, for data with finite energy, it is well-known that the Maxwell-Klein-Gordon equations admit global solutions. However, the asymptotic behaviours of the solutions for the data with non-vanishing charge and arb
In this note, we consider discrete nonlinear Klein-Gordon equations with potential. By the pioneering work of Sigal, it is known that for the continuous nonlinear Klein-Gordon equation, no small time periodic solution exists generically. However, for
Breathers are nontrivial time-periodic and spatially localized solutions of nonlinear dispersive partial differential equations (PDEs). Families of breathers have been found for certain integrable PDEs but are believed to be rare in non-integrable on
We consider a coupled Wave-Klein-Gordon system in 3D, and prove global regularity and modified scattering for small and smooth initial data with suitable decay at infinity. This system was derived by Wang and LeFloch-Ma as a simplified model for the
We study the scattering problems for the quadratic Klein-Gordon equations with radial initial data in the energy space. For 3D, we prove small data scattering, and for 4D, we prove large data scattering with mass below the ground state.