ﻻ يوجد ملخص باللغة العربية
We derive the equation governing the axial-perturbations in the space-time of a non-rotating uncharged primordial black hole (PBH), produced in early Universe, whose metric is taken as generalized McVittie metric. The generalized McVittie metric is a cosmological black hole metric, proposed by V. Faraoni and A. Jacques in 2007 [Phys. Rev. D 76, 063510 (2007)]. This describes the space-time of a Schwarzschild black hole embedded in FLRW-Universe, while allowing its mass-change. Our derivation is quite similar to the procedure of derivation of S. Chandrasekhar, for deriving the Regge-Wheeler equation for Schwarzschild metric [S. Chandrasekhar, The Mathematical Theory of Black holes ; Oxford University Press (1983)]. The equation we derive, is the equivalent counterpart of the Regge-Wheeler equation, in case of generalized McVittie metric. Using this equation, we have derived a condition for which the imaginary part of the frequency, of any mode of perturbations, would be greater than zero or in other words, the condition for which the corresponding modes grow exponentially with time. This is actually the stability criteria for the axial-perturbations in the generalized McVittie metric.
There is growing notion that black holes may not contain curvature singularities (and that indeed nature in general may abhor such spacetime defects). This notion could have implications on our understanding of the evolution of primordial black holes
We consider dynamics of a quantum scalar field, minimally coupled to classical gravity, in the near-horizon region of a Schwarzschild black-hole. It is described by a static Klein-Gordon operator which in the near-horizon region reduces to a scale in
The complete family of exact solutions representing accelerating and rotating black holes with possible electromagnetic charges and a NUT parameter is known in terms of a modified Plebanski-Demianski metric. This demonstrates the singularity and hori
We show that, independently of the scalar field potential and of specific asymptotic properties of the spacetime (asymptotically flat, de Sitter or anti-de Sitter), any static, spherically symmetric or planar, black hole or soliton solution of the Ei
Black hole perturbation theory is typically studied on time surfaces that extend between the bifurcation sphere and spatial infinity. From a physical point of view, however, it may be favorable to employ time surfaces that extend between the future e