ﻻ يوجد ملخص باللغة العربية
In this work, we define a set of analytic tools to describe the dynamic response of the magnetization to small perturbations, which can be used on its own or in combination with micromagnetic simulations and does not require saturation. We present a general analytic description of the ferromagnetic high frequency susceptibility tensor to describe angular as well as frequency dependent ferromagnetic resonance spectra and account for asymmetries in the line shape. Furthermore, we expand this model to reciprocal space and show how it describes the magnon dispersion. Finally we suggest a trajectory dependent solving tool to describe the equilibrium states of the magnetization.
We theoretically study the collective excitations of an ideal gas confined in an isotropic harmonic trap. We give an exact solution to the Boltzmann-Vlasov equation; as expected for a single-component system, the associated mode frequencies are integ
We present a theoretical study of the collective excitations of a trapped imbalanced fermion gas at unitarity, when the system consists of a superfluid core and a normal outer shell. We formulate the relevant boundary conditions and treat the normal
We study collective excitation modes of a fermionic gas of $^6$Li atoms in the BEC-BCS crossover regime. While measurements of the axial compression mode in the cigar-shaped trap close to a Feshbach resonance confirm theoretical expectations, the rad
We calculate the excitation modes of a 1D dipolar quantum gas confined in a harmonic trap with frequency $omega_0$ and predict how the frequency of the breathing n=2 mode characterizes the interaction strength evolving from the Tonks-Girardeau value
A remarkably simple regularity in the energies of 0+ states in a broad class of collective models is discussed. A single formula for all 0+ states in flat-bottomed infinite potentials that depends only on the number of dimensions and a simpler expres