ترغب بنشر مسار تعليمي؟ اضغط هنا

Post-Quantum VRF and its Applications in Future-Proof Blockchain System

112   0   0.0 ( 0 )
 نشر من قبل Zengpeng Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A verifiable random function (VRF in short) is a powerful pseudo-random function that provides a non-interactively public verifiable proof for the correctness of its output. Recently, VRFs have found essential applications in blockchain design, such as random beacons and proof-of-stake consensus protocols. To our knowledge, the first generation of blockchain systems used inherently inefficient proof-of-work consensuses, and the research community tried to achieve the same properties by proposing proof-of-stake schemes where resource-intensive proof-of-work is emulated by cryptographic constructions. Unfortunately, those most discussed proof-of-stake consensuses (e.g., Algorand and Ouroborous family) are not future-proof because the building blocks are secure only under the classical hard assumptions; in particular, their designs ignore the advent of quantum computing and its implications. In this paper, we propose a generic compiler to obtain the post-quantum VRF from the simple VRF solution using symmetric-key primitives (e.g., non-interactive zero-knowledge system) with an intrinsic property of quantum-secure. Our novel solution is realized via two efficient zero-knowledge systems ZKBoo and ZKB++, respectively, to validate the compiler correctness. Our proof-of-concept implementation indicates that even today, the overheads introduced by our solution are acceptable in real-world deployments. We also demonstrate potential applications of a quantum-secure VRF, such as quantum-secure decentralized random beacon and lottery-based proof of stake consensus blockchain protocol.



قيم البحث

اقرأ أيضاً

Voting is a means to agree on a collective decision based on available choices (e.g., candidates), where participants (voters) agree to abide by their outcome. To improve some features of e-voting, decentralized solutions based on a blockchain can be employed, where the blockchain represents a public bulletin board that in contrast to a centralized bulletin board provides $100%$ availability and censorship resistance. A blockchain ensures that all entities in the voting system have the same view of the actions made by others due to its immutable and append-only log. The existing blockchain-based boardroom voting solution called Open Voting Network (OVN) provides the privacy of votes and perfect ballot secrecy, but it supports only two candidates. We present BBB-Voting, an equivalent blockchain-based approach for decentralized voting than OVN, but in contrast to it, BBB-Voting supports 1-out-of-$k$ choices and provides a fault tolerance mechanism that enables recovery from stalling participants. We provide a cost-optimized implementation using Ethereum, which we compare with OVN and show that our work decreases the costs for voters by $13.5%$ in terms of gas consumption. Next, we outline the extension of our implementation scaling to magnitudes higher number of participants than in a boardroom voting, while preserving the costs paid by the authority and participants -- we made proof-of-concept experiments with up to 1000 participants.
Privacy preservation is a big concern for various sectors. To protect individual user data, one emerging technology is differential privacy. However, it still has limitations for datasets with frequent queries, such as the fast accumulation of privac y cost. To tackle this limitation, this paper explores the integration of a secured decentralised ledger, blockchain. Blockchain will be able to keep track of all noisy responses generated with differential privacy algorithm and allow for certain queries to reuse old responses. In this paper, a demo of a proposed blockchain-based privacy management system is designed as an interactive decentralised web application (DApp). The demo created illustrates that leveraging on blockchain will allow the total privacy cost accumulated to decrease significantly.
This paper we define a new Puzzle called Proof-of-Interaction and we show how it can replace, in the Bitcoin protocol, the Proof-of-Work algorithm.
Mobile service providers (MSPs) are particularly vulnerable to roaming frauds, especially ones that exploit the long delay in the data exchange process of the contemporary roaming management systems, causing multi-billion dollars loss each year. In t his paper, we introduce BlockRoam, a novel blockchain-based roaming management system that provides an efficient data exchange platform among MSPs and mobile subscribers. Utilizing the Proof-of-Stake (PoS) consensus mechanism and smart contracts, BlockRoam can significantly shorten the information exchanging delay, thereby addressing the roaming fraud problems. Through intensive analysis, we show that the security and performance of such PoS-based blockchain network can be further enhanced by incentivizing more users (e.g., subscribers) to participate in the network. Moreover, users in such networks often join stake pools (e.g., formed by MSPs) to increase their profits. Therefore, we develop an economic model based on Stackelberg game to jointly maximize the profits of the network users and the stake pool, thereby encouraging user participation. We also propose an effective method to guarantee the uniqueness of this games equilibrium. The performance evaluations show that the proposed economic model helps the MSPs to earn additional profits, attracts more investment to the blockchain network, and enhances the networks security and performance.
597 - Neo C.K. Yiu 2021
Blockchain is a continuously developing technology that has made digital transactions and related computing operations more transparent and secure through globally distributed and decentralized management of states, as well as the strong immutability of blocks mined and transactions validated in a network enabled by the blockchain technology. This manuscript is aimed at elaborating the concept of blockchain technology alongside its coordination and implementation with other emerging technologies, such as smart contract, which works with different blockchain frameworks, as well as enabling anonymous transactions and decentralized consensus amongst different untrusting parties. The discussion of blockchain forks is also covered in this manuscript, depicting fork events created in the blockchain process, their brief history, types, and impacts upon the blockchain development and operation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا