ﻻ يوجد ملخص باللغة العربية
Voting is a means to agree on a collective decision based on available choices (e.g., candidates), where participants (voters) agree to abide by their outcome. To improve some features of e-voting, decentralized solutions based on a blockchain can be employed, where the blockchain represents a public bulletin board that in contrast to a centralized bulletin board provides $100%$ availability and censorship resistance. A blockchain ensures that all entities in the voting system have the same view of the actions made by others due to its immutable and append-only log. The existing blockchain-based boardroom voting solution called Open Voting Network (OVN) provides the privacy of votes and perfect ballot secrecy, but it supports only two candidates. We present BBB-Voting, an equivalent blockchain-based approach for decentralized voting than OVN, but in contrast to it, BBB-Voting supports 1-out-of-$k$ choices and provides a fault tolerance mechanism that enables recovery from stalling participants. We provide a cost-optimized implementation using Ethereum, which we compare with OVN and show that our work decreases the costs for voters by $13.5%$ in terms of gas consumption. Next, we outline the extension of our implementation scaling to magnitudes higher number of participants than in a boardroom voting, while preserving the costs paid by the authority and participants -- we made proof-of-concept experiments with up to 1000 participants.
We address the question of aggregating the preferences of voters in the context of participatory budgeting. We scrutinize the voting method currently used in practice, underline its drawbacks, and introduce a novel scheme tailored to this setting, wh
In earlier work, we extend the Dolev-Yao model with assertions. We build on that work and add existential abstraction to the language, which allows us to translate common constructs used in voting protocols into proof properties. We also give an equi
Democratic principles demand that every voter should be able to individually verify that their vote is recorded as intended and counted as recorded, without having to trust any authorities. However, most end-to-end (E2E) verifiable voting protocols t
A verifiable random function (VRF in short) is a powerful pseudo-random function that provides a non-interactively public verifiable proof for the correctness of its output. Recently, VRFs have found essential applications in blockchain design, such
We here study the behavior of political party members aiming at identifying how ideological communities are created and evolve over time in diverse (fragmented and non-fragmented) party systems. Using public voting data of both Brazil and the US, we