ﻻ يوجد ملخص باللغة العربية
Scientists have been interested in estimating causal peer effects to understand how peoples behaviors are affected by their network peers. However, it is well known that identification and estimation of causal peer effects are challenging in observational studies for two reasons. The first is the identification challenge due to unmeasured network confounding, for example, homophily bias and contextual confounding. The second issue is network dependence of observations, which one must take into account for valid statistical inference. Negative control variables, also known as placebo variables, have been widely used in observational studies including peer effect analysis over networks, although they have been used primarily for bias detection. In this article, we establish a formal framework which leverages a pair of negative control outcome and exposure variables (double negative controls) to nonparametrically identify causal peer effects in the presence of unmeasured network confounding. We then propose a generalized method of moments estimator for causal peer effects, and establish its consistency and asymptotic normality under an assumption about $psi$-network dependence. Finally, we provide a network heteroskedasticity and autocorrelation consistent variance estimator. Our methods are illustrated with an application to peer effects in education.
Although the exposure can be randomly assigned in studies of mediation effects, any form of direct intervention on the mediator is often infeasible. As a result, unmeasured mediator-outcome confounding can seldom be ruled out. We propose semiparametr
Bayesian causal inference offers a principled approach to policy evaluation of proposed interventions on mediators or time-varying exposures. We outline a general approach to the estimation of causal quantities for settings with time-varying confound
The data drawn from biological, economic, and social systems are often confounded due to the presence of unmeasured variables. Prior work in causal discovery has focused on discrete search procedures for selecting acyclic directed mixed graphs (ADMGs
Data-driven individualized decision making has recently received increasing research interests. Most existing methods rely on the assumption of no unmeasured confounding, which unfortunately cannot be ensured in practice especially in observational s
We develop a new approach for identifying and estimating average causal effects in panel data under a linear factor model with unmeasured confounders. Compared to other methods tackling factor models such as synthetic controls and matrix completion,