ﻻ يوجد ملخص باللغة العربية
The data drawn from biological, economic, and social systems are often confounded due to the presence of unmeasured variables. Prior work in causal discovery has focused on discrete search procedures for selecting acyclic directed mixed graphs (ADMGs), specifically ancestral ADMGs, that encode ordinary conditional independence constraints among the observed variables of the system. However, confounded systems also exhibit more general equality restrictions that cannot be represented via these graphs, placing a limit on the kinds of structures that can be learned using ancestral ADMGs. In this work, we derive differentiable algebraic constraints that fully characterize the space of ancestral ADMGs, as well as more general classes of ADMGs, arid ADMGs and bow-free ADMGs, that capture all equality restrictions on the observed variables. We use these constraints to cast causal discovery as a continuous optimization problem and design differentiable procedures to find the best fitting ADMG when the data comes from a confounded linear system of equations with correlated errors. We demonstrate the efficacy of our method through simulations and application to a protein expression dataset. Code implementing our methods is open-source and publicly available at https://gitlab.com/rbhatta8/dcd and will be incorporated into the Ananke package.
Learning a causal directed acyclic graph from data is a challenging task that involves solving a combinatorial problem for which the solution is not always identifiable. A new line of work reformulates this problem as a continuous constrained optimiz
We study the problem of learning conditional average treatment effects (CATE) from high-dimensional, observational data with unobserved confounders. Unobserved confounders introduce ignorance -- a level of unidentifiability -- about an individuals re
Although the exposure can be randomly assigned in studies of mediation effects, any form of direct intervention on the mediator is often infeasible. As a result, unmeasured mediator-outcome confounding can seldom be ruled out. We propose semiparametr
Data-driven individualized decision making has recently received increasing research interests. Most existing methods rely on the assumption of no unmeasured confounding, which unfortunately cannot be ensured in practice especially in observational s
Bayesian causal inference offers a principled approach to policy evaluation of proposed interventions on mediators or time-varying exposures. We outline a general approach to the estimation of causal quantities for settings with time-varying confound