ﻻ يوجد ملخص باللغة العربية
Dynamic Mode Decomposition (DMD) is a powerful tool for extracting spatial and temporal patterns from multi-dimensional time series, and it has been used successfully in a wide range of fields, including fluid mechanics, robotics, and neuroscience. Two of the main challenges remaining in DMD research are noise sensitivity and issues related to Krylov space closure when modeling nonlinear systems. Here, we investigate the combination of noise and nonlinearity in a controlled setting, by studying a class of systems with linear latent dynamics which are observed via multinomial observables. Our numerical models include system and measurement noise. We explore the influences of dataset metrics, the spectrum of the latent dynamics, the normality of the system matrix, and the geometry of the dynamics. Our results show that even for these very mildly nonlinear conditions, DMD methods often fail to recover the spectrum and can have poor predictive ability. Our work is motivated by our experience modeling multilegged robot data, where we have encountered great difficulty in reconstructing time series for oscillatory systems with slow transients, which decay only slightly faster than a period.
Koopman mode analysis has provided a framework for analysis of nonlinear phenomena across a plethora of fields. Its numerical implementation via Dynamic Mode Decomposition (DMD) has been extensively deployed and improved upon over the last decade. We
Extended dynamic mode decomposition (EDMD) provides a class of algorithms to identify patterns and effective degrees of freedom in complex dynamical systems. We show that the modes identified by EDMD correspond to those of compact Perron-Frobenius an
The Dynamic-Mode Decomposition (DMD) is a well established data-driven method of finding temporally evolving linear-mode decompositions of nonlinear time series. Traditionally, this method presumes that all relevant dimensions are sampled through mea
A data-driven and equation-free approach is proposed and discussed to model ships maneuvers in waves, based on the dynamic mode decomposition (DMD). DMD is a dimensionality-reduction/reduced-order modeling method, which provides a linear finite-dimen
Numerical approximation methods for the Koopman operator have advanced considerably in the last few years. In particular, data-driven approaches such as dynamic mode decomposition (DMD) and its generalization, the extended-DMD (EDMD), are becoming in