ﻻ يوجد ملخص باللغة العربية
Two dimensional multiferroics inherit prominent physical properties from both low dimensional materials and magnetoelectric materials, and can go beyond their three dimensional counterparts for their unique structures. Here, based on density functional theory calculations, a MXene derivative, i.e., i-MXene (Ta$_{2/3}$Fe$_{1/3}$)$_2$CO$_2$, is predicted to be a type-I multiferroic material. Originated from the reliable $5d^0$ rule, its ferroelectricity is robust, with a moderate polarization up to $sim12.33$ $mu$C/cm$^2$ along the a-axis, which can be easily switched and may persist above room temperature. Its magnetic ground state is layered antiferromagnetism. Although it is a type-I multiferroic material, its Neel temperature can be significantly tuned by the paraelectric-ferroelectric transition, manifesting a kind of intrinsic magnetoelectric coupling. Such magnetoelectric effect is originated from the conventional magnetostriction, but unexpectedly magnified by the exchange frustration. Our work not only reveals a nontrivial magnetoelectric mechanism, but also provides a strategy to search for more multiferroics in the two dimensional limit.
Achieving multiferroic two-dimensional (2D) materials should enable numerous functionalities in nanoscale devices. Until now, however, predicted 2D multiferroics are very few and with coexisting yet only loosely coupled (type-I) ferroelectricity and
Two-dimensional (2D) topological insulator (TI) have been recognized as a new class of quantum state of matter. They are distinguished from normal 2D insulators with their nontrivial band-structure topology identified by the $Z_2$ number as protected
Multiferroics are those materials with more than one ferroic order, and magnetoelectricity refers to the mutual coupling between magnetism and electricity. The discipline of multiferroicity has never been so highly active as that in the first decade
Spin-orbit torques due to interfacial Rashba and spin Hall effects have been widely considered as a potentially more efficient approach than the conventional spin-transfer torque to control the magnetization of ferromagnets. We report a comprehensive
The graphene-enhanced Raman scattering of Rhodamine 6G molecules on pristine, fluorinated and 4-nitrophenyl functionalized graphene substrates was studied. The uniformity of the Raman signal enhancement was studied by making large Raman maps. The rel