ترغب بنشر مسار تعليمي؟ اضغط هنا

Chirality-induced effective magnetic field in a phthalocyanine molecule

132   0   0.0 ( 0 )
 نشر من قبل Shinji Miwa
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Chirality in organic molecules has attracted considerable attention in the fields of chemistry, biology, and spintronics. This paper reports on perpendicular magnetization hysteresis loops of a multilayer consisting of ultrathin Fe (001), chiral phthalocyanine molecule ((P)- or (M)-PbPc-DTBPh), and MgO (001). We find a chirality-dependent shift of the hysteresis loop. Unlike the previously reported bias current induced phenomena, the result shows a chirality-induced effective magnetic field in the phthalocyanine molecule in the absence of a bias current in the system. This study opens up a new direction in the emerging field of chiral molecular spintronics.



قيم البحث

اقرأ أيضاً

The Dzyaloshinskii-Moriya interaction (DMI) has drawn great attention as it stabilizes magnetic chirality, with important implications in fundamental and applied research. This antisymmetric exchange interaction is induced by the broken inversion sym metry at interfaces or in non-centrosymmetric lattices. Significant interfacial DMI was found often at magnetic / heavy-metal interfaces with large spin-orbit coupling. Recent studies have shown promise of induced DMI at interfaces involving light elements such as carbon (graphene) or oxygen. Here we report direct observation of induced DMI by chemisorption of the lightest element, hydrogen, on a ferromagnetic layer at room temperature, which is supported by density functional theory calculations. We further demonstrate a reversible chirality transition of the magnetic domain walls due to the induced DMI via hydrogen chemisorption/desorption. These results shed new light on the understanding of DMI in low atomic number materials and design of novel chiral spintronics and magneto-ionic devices.
Exploring new parameter regimes to realize and control novel phases of matter has been a main theme in modern condensed matter physics research. The recent discovery of 2D magnetism in nearly freestanding monolayer atomic crystals has already led to observations of a number of novel magnetic phenomena absent in bulk counterparts. Such intricate interplays between magnetism and crystalline structures provide ample opportunities for exploring quantum phase transitions in this new 2D parameter regime. Here, using magnetic field and temperature dependent circularly polarized Raman spectroscopy of phonons and magnons, we map out the phase diagram of CrI3 that has been known to be a layered AFM in its 2D films and a FM in its 3D bulk. We, however, reveal a novel mixed state of layered AFM and FM in 3D CrI3 bulk crystals where the layered AFM survives in the surface layers and the FM appears in deeper bulk layers. We then show that the surface layered AFM transits into the FM at a critical magnetic field of 2 T, similar to what was found in the few layer case. Interestingly, concurrent with this magnetic phase transition, we discover a first-order structural phase transition that alters the crystallographic point group from C3i to C2h and thus, from a symmetry perspective, this monoclinic structural phase belongs to the 3D nematic order universality class. Our result not only unveils the complex single magnon behavior in 3D CrI3, but also settles down the puzzle of how CrI3 transits from a bulk FM to a thin layered AFM semiconductor, despite recent efforts in understanding the origin of layered AFM in CrI3 thin layer, and reveals the intimate relationship between the layered AFM-to-FM and the crystalline rhombohedral-to-monoclinic phase transitions. These findings further open up opportunities for future 2D magnet-based magneto-mechanical devices.
In chiral magnetic materials, numerous intriguing phenomena such as built in chiral magnetic domain walls (DWs) and skyrmions are generated by the Dzyaloshinskii Moriya interaction (DMI). The DMI also results in asymmetric DW speed under in plane mag netic field, which provides a useful scheme to measure the DMI strengths. However, recent findings of additional asymmetries such as chiral damping have disenabled unambiguous DMI determination and the underlying mechanism of overall asymmetries becomes under debate. By extracting the DMI-induced symmetric contribution, here we experimentally investigated the nature of the additional asymmetry. The results revealed that the additional asymmetry has a truly antisymmetric nature with the typical behavior governed by the DW chirality. In addition, the antisymmetric contribution changes the DW speed more than 100 times, which cannot be solely explained by the chiral damping scenario. By calibrating such antisymmetric contributions, experimental inaccuracies can be largely removed, enabling again the DMI measurement scheme.
We present a mechanism for deterministic control of the Bloch chirality in magnetic skyrmions originating from the interplay between an interfacial Dzyaloshinskii$-$Moriya interaction (DMI) and a perpendicular magnetic field. Although conventional in terfacial DMI favors chiral Neel skyrmions, it does not break the energetic symmetry of the two Bloch chiralities in mixed Bloch$-$Neel skyrmions. However, the energy barrier to switching between Bloch chiralities does depend on the sense of rotation, which is dictated by the direction of the driving field. Our analysis of steady-state Dzyaloshinskii domain wall dynamics culminates in a switching diagram akin to the Stoner$-$Wohlfarth astroid, revealing the existence of both monochiral and multichiral Bloch regimes. Furthermore, we discuss recent theory of vertical Bloch line$-$mediated Bloch chirality selection in the precessional regime and extend these arguments to lower driving fields. This work establishes that applied magnetic fields can be used to dynamically switch between the chiral Bloch states of domain walls and skyrmions as indicated by this new Dzyaloshinskii astroid.
A quantized version of the magnetoelectric effect, known as the topological magnetoelectric effect, can exist in a time-reversal invariant topological insulator with all its surface states gapped out by magnetism. This topological phase, called the a xion insulator phase, has been theoretically proposed but is still lack of conclusive experimental evidence due to the small signal of topological magnetoelectric effect. In this work, we propose that the dynamical in-plane magnetization in an axion insulator can generate a pseudo-electric field, which acts on the surface state of topological insulator films and leads to the non-zero response current. Strikingly, we find that the current at magnetic resonance (either ferromagnetic or anti-ferromagnetic) is larger than that of topological magnetoelectric effect by several orders of magnitude, and thereby serves as a feasible smoking gun to confirm the axion insulator phase in the candidate materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا