ﻻ يوجد ملخص باللغة العربية
$R$ is a unital ring with involution. We investigate the characterizations and representations of weighted core inverse of an element in $R$ by idempotents and units. For example, let $ain R$ and $ein R$ be an invertible Hermitian element, $ngeqslant 1$, then $a$ is $e$-core invertible if and only if there exists an element (or an idempotent) $p$ such that $(ep)^{ast}=ep$, $pa=0$ and $a^{n}+p$ (or $a^{n}(1-p)+p$) is invertible. As a consequence, let $e, fin R$ be two invertible Hermitian elements, then $a$ is weighted-$mathrm{EP}$ with respect to $(e, f)$ if and only if there exists an element (or an idempotent) $p$ such that $(ep)^{ast}=ep$, $(fp)^{ast}=fp$, $pa=ap=0$ and $a^{n}+p$ (or $a^{n}(1-p)+p$) is invertible. These results generalize and improve conclusions in cite{Li}.
Let R be a unital ring with involution, we give the characterizations and representations of the core and dual core inverses of an element in R by Hermitian elements (or projections) and units. For example, let a in R and n is an integer greater than
We show that a von Neumann regular ring with involution is directly finite provided that it admits a representation as a ring of endomorphisms (the involution given by taking adjoints) of a vector space endowed with a non-degenerate orthosymmetric sesquilinear form.
In this paper, we investigate the weighted core-EP inverse introduced by Ferreyra, Levis and Thome. Several computational representations of the weighted core-EP inverse are obtained in terms of singular-value decomposition, full-rank decomposition a
In [Q. Xu et al., The solutions to some operator equations, Linear Algebra Appl.(2008), doi:10.1016/j.laa.2008.05.034], Xu et al. provided the necessary and sufficient conditions for the existence of a solution to the equation $AXB^*-BX^*A^*=C$ in th
Let $mathscr{C}$ be a category with an involution $ast$. Suppose that $varphi : X rightarrow X$ is a morphism and $(varphi_1, Z, varphi_2)$ is an (epic, monic) factorization of $varphi$ through $Z$, then $varphi$ is core invertible if and only if $(v