ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate the weighted core-EP inverse introduced by Ferreyra, Levis and Thome. Several computational representations of the weighted core-EP inverse are obtained in terms of singular-value decomposition, full-rank decomposition and QR decomposition. These representations are expressed in terms of various matrix powers as well as matrix product involving the core-EP inverse, Moore-Penrose inverse and usual matrix inverse. Finally, those representations involving only Moore-Penrose inverse are compared and analyzed via computational complexity and numerical examples.
In this paper, we present three limit representations of the core-EP inverse. The first approach is based on the full-rank decomposition of a given matrix. The second and third approaches, which depend on the explicit expression of the core-EP invers
A new generalized inverse for a square matrix $Hinmathbb{C}^{ntimes n}$, called CCE-inverse, is established by the core-EP decomposition and Moore-Penrose inverse $H^{dag}$. We propose some characterizations of the CCE-inverse. Furthermore, two canon
$R$ is a unital ring with involution. We investigate the characterizations and representations of weighted core inverse of an element in $R$ by idempotents and units. For example, let $ain R$ and $ein R$ be an invertible Hermitian element, $ngeqslant
Let $mathscr{C}$ be a category with an involution $ast$. Suppose that $varphi : X rightarrow X$ is a morphism and $(varphi_1, Z, varphi_2)$ is an (epic, monic) factorization of $varphi$ through $Z$, then $varphi$ is core invertible if and only if $(v
In this paper, we introduce the notion of a (generalized) right core inverse and give its characterizations and expressions. Then, we provide the relation schema of (one-sided) core inverses, (one-sided) pseudo core inverses and EP elements.