ﻻ يوجد ملخص باللغة العربية
Let $alpha=0.a_1a_2a_3ldots$ be an irrational number in base $b>1$, where $0leq a_i<b$. The number $alpha in (0,1)$ is a $textit{normal number}$ if every block $(a_{n+1}a_{n+2}ldots a_{n+k})$ of $k$ digits occurs with probability $1/b^k$. A conditional proof of the normality of the real number $pi$ in base $10$ is presented in this note.
Prime Numbers clearly accumulate on defined spiral graphs,which run through the Square Root Spiral. These spiral graphs can be assigned to different spiral-systems, in which all spiral-graphs have the same direction of rotation and the same -- second
Natural numbers divisible by the same prime factor lie on defined spiral graphs which are running through the Square Root Spiral (also named as the Spiral of Theodorus or Wurzel Spirale or Einstein Spiral). Prime Numbers also clearly accumulate on su
The natural numbers divisible by the Prime Factors 2, 3, 5, 11, 13 and 17 lie on defined spiral graphs, which run through the Square Root Spiral. A mathematical analysis shows, that these spiral graphs are defined by specific quadratic polynomials. B
From the more than two hundred partial orders for fuzzy numbers proposed in the literature, only a few are total. In this paper, we introduce the notion of admissible order for fuzzy numbers equipped with a partial order, i.e. a total order which ref
The proofs that the real numbers are denumerable will be shown, i.e., that there exists one-to-one correspondence between the natural numbers $N$ and the real numbers $Re$. The general element of the sequence that contains all real numbers will be ex