ﻻ يوجد ملخص باللغة العربية
Natural numbers divisible by the same prime factor lie on defined spiral graphs which are running through the Square Root Spiral (also named as the Spiral of Theodorus or Wurzel Spirale or Einstein Spiral). Prime Numbers also clearly accumulate on such spiral graphs. And the square numbers 4, 9, 16, 25, 36,... form a highly three-symmetrical system of three spiral graphs, which divides the square-root-spiral into three equal areas. A mathematical analysis shows that these spiral graphs are defined by quadratic polynomials. Fibonacci number sequences also play a part in the structure of the Square Root Spiral. Fibonacci Numbers divide the Square Root Spiral into areas and angle sectors with constant proportions. These proportions are linked to the golden mean (or golden section), which behaves as a self-avoiding-walk-constant in the lattice-like structure of the square root spiral.
Prime Numbers clearly accumulate on defined spiral graphs,which run through the Square Root Spiral. These spiral graphs can be assigned to different spiral-systems, in which all spiral-graphs have the same direction of rotation and the same -- second
The natural numbers divisible by the Prime Factors 2, 3, 5, 11, 13 and 17 lie on defined spiral graphs, which run through the Square Root Spiral. A mathematical analysis shows, that these spiral graphs are defined by specific quadratic polynomials. B
We prove some theorems which give sufficient conditions for the existence of prime numbers among the terms of a sequence which has pairwise relatively prime terms.
Let $alpha=0.a_1a_2a_3ldots$ be an irrational number in base $b>1$, where $0leq a_i<b$. The number $alpha in (0,1)$ is a $textit{normal number}$ if every block $(a_{n+1}a_{n+2}ldots a_{n+k})$ of $k$ digits occurs with probability $1/b^k$. A condition
We present the pattern underlying some of the properties of natural numbers, using the framework of complex networks. The network used is a divisibility network in which each node has a fixed identity as one of the natural numbers and the connections