ﻻ يوجد ملخص باللغة العربية
In a recent paper Juodis and Reese (2021) (JR) show that the application of the CD test proposed by Pesaran (2004) to residuals from panels with latent factors results in over-rejection and propose a randomized test statistic to correct for over-rejection, and add a screening component to achieve power. This paper considers the same problem but from a different perspective and shows that the standard CD test remains valid if the latent factors are weak, and proposes a simple bias-corrected CD test, labelled CD*, which is shown to be asymptotically normal, irrespective of whether the latent factors are weak or strong. This result is shown to hold for pure latent factor models as well as for panel regressions with latent factors. Small sample properties of the CD* test are investigated by Monte Carlo experiments and are shown to have the correct size and satisfactory power for both Gaussian and non-Gaussian errors. In contrast, it is found that JRs test tends to over-reject in the case of panels with non-Gaussian errors, and have low power against spatial network alternatives. The use of the CD* test is illustrated with two empirical applications from the literature.
Accurate estimation for extent of cross{sectional dependence in large panel data analysis is paramount to further statistical analysis on the data under study. Grouping more data with weak relations (cross{sectional dependence) together often results
We consider a testing problem for cross-sectional dependence for high-dimensional panel data, where the number of cross-sectional units is potentially much larger than the number of observations. The cross-sectional dependence is described through a
We study identification and estimation of causal effects in settings with panel data. Traditionally researchers follow model-based identification strategies relying on assumptions governing the relation between the potential outcomes and the unobserv
In this paper, a statistical model for panel data with unobservable grouped factor structures which are correlated with the regressors and the group membership can be unknown. The factor loadings are assumed to be in different subspaces and the subsp
We propose a generalization of the linear panel quantile regression model to accommodate both textit{sparse} and textit{dense} parts: sparse means while the number of covariates available is large, potentially only a much smaller number of them have