ﻻ يوجد ملخص باللغة العربية
Accurate estimation for extent of cross{sectional dependence in large panel data analysis is paramount to further statistical analysis on the data under study. Grouping more data with weak relations (cross{sectional dependence) together often results in less efficient dimension reduction and worse forecasting. This paper describes cross-sectional dependence among a large number of objects (time series) via a factor model and parameterizes its extent in terms of strength of factor loadings. A new joint estimation method, benefiting from unique feature of dimension reduction for high dimensional time series, is proposed for the parameter representing the extent and some other parameters involved in the estimation procedure. Moreover, a joint asymptotic distribution for a pair of estimators is established. Simulations illustrate the effectiveness of the proposed estimation method in the finite sample performance. Applications in cross-country macro-variables and stock returns from S&P 500 are studied.
This paper reexamines the seminal Lagrange multiplier test for cross-section independence in a large panel model where both the number of cross-sectional units n and the number of time series observations T can be large. The first contribution of the
We propose a unified frequency domain cross-validation (FDCV) method to obtain an HAC standard error. Our proposed method allows for model/tuning parameter selection across parametric and nonparametric spectral estimators simultaneously. Our candidat
In a recent paper Juodis and Reese (2021) (JR) show that the application of the CD test proposed by Pesaran (2004) to residuals from panels with latent factors results in over-rejection and propose a randomized test statistic to correct for over-reje
Structural estimation is an important methodology in empirical economics, and a large class of structural models are estimated through the generalized method of moments (GMM). Traditionally, selection of structural models has been performed based on
Datasets from field experiments with covariate-adaptive randomizations (CARs) usually contain extra baseline covariates in addition to the strata indicators. We propose to incorporate these extra covariates via auxiliary regressions in the estimation