ترغب بنشر مسار تعليمي؟ اضغط هنا

Embedding and Beamforming: All-neural Causal Beamformer for Multichannel Speech Enhancement

121   0   0.0 ( 0 )
 نشر من قبل Andong Li
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The spatial covariance matrix has been considered to be significant for beamformers. Standing upon the intersection of traditional beamformers and deep neural networks, we propose a causal neural beamformer paradigm called Embedding and Beamforming, and two core modules are designed accordingly, namely EM and BM. For EM, instead of estimating spatial covariance matrix explicitly, the 3-D embedding tensor is learned with the network, where both spectral and spatial discriminative information can be represented. For BM, a network is directly leveraged to derive the beamforming weights so as to implement filter-and-sum operation. To further improve the speech quality, a post-processing module is introduced to further suppress the residual noise. Based on the DNS-Challenge dataset, we conduct the experiments for multichannel speech enhancement and the results show that the proposed system outperforms previous advanced baselines by a large margin in multiple evaluation metrics.



قيم البحث

اقرأ أيضاً

In this paper we address speaker-independent multichannel speech enhancement in unknown noisy environments. Our work is based on a well-established multichannel local Gaussian modeling framework. We propose to use a neural network for modeling the sp eech spectro-temporal content. The parameters of this supervised model are learned using the framework of variational autoencoders. The noisy recording environment is supposed to be unknown, so the noise spectro-temporal modeling remains unsupervised and is based on non-negative matrix factorization (NMF). We develop a Monte Carlo expectation-maximization algorithm and we experimentally show that the proposed approach outperforms its NMF-based counterpart, where speech is modeled using supervised NMF.
Multi-channel speech enhancement aims to extract clean speech from a noisy mixture using signals captured from multiple microphones. Recently proposed methods tackle this problem by incorporating deep neural network models with spatial filtering tech niques such as the minimum variance distortionless response (MVDR) beamformer. In this paper, we introduce a different research direction by viewing each audio channel as a node lying in a non-Euclidean space and, specifically, a graph. This formulation allows us to apply graph neural networks (GNN) to find spatial correlations among the different channels (nodes). We utilize graph convolution networks (GCN) by incorporating them in the embedding space of a U-Net architecture. We use LibriSpeech dataset and simulate room acoustics data to extensively experiment with our approach using different array types, and number of microphones. Results indicate the superiority of our approach when compared to prior state-of-the-art method.
123 - Lu Ma , Song Yang , Yaguang Gong 2021
This paper proposes an noise type classification aided attention-based neural network approach for monaural speech enhancement. The network is constructed based on a previous work by introducing a noise classification subnetwork into the structure an d taking the classification embedding into the attention mechanism for guiding the network to make better feature extraction. Specifically, to make the network an end-to-end way, an audio encoder and decoder constructed by temporal convolution is used to make transformation between waveform and spectrogram. Additionally, our model is composed of two long short term memory (LSTM) based encoders, two attention mechanism, a noise classifier and a speech mask generator. Experiments show that, compared with OM-LSA and the previous work, the proposed noise classification aided attention-based approach can achieve better performance in terms of speech quality (PESQ). More promisingly, our approach has better generalization ability to unseen noise conditions.
Recurrent neural networks using the LSTM architecture can achieve significant single-channel noise reduction. It is not obvious, however, how to apply them to multi-channel inputs in a way that can generalize to new microphone configurations. In cont rast, spatial clustering techniques can achieve such generalization, but lack a strong signal model. This paper combines the two approaches to attain both the spatial separation performance and generality of multichannel spatial clustering and the signal modeling performance of multiple parallel single-channel LSTM speech enhancers. The system is compared to several baselines on the CHiME3 dataset in terms of speech quality predicted by the PESQ algorithm and word error rate of a recognizer trained on mis-matched conditions, in order to focus on generalization. Our experiments show that by combining the LSTM models with the spatial clustering, we reduce word error rate by 4.6% absolute (17.2% relative) on the development set and 11.2% absolute (25.5% relative) on test set compared with spatial clustering system, and reduce by 10.75% (32.72% relative) on development set and 6.12% absolute (15.76% relative) on test data compared with LSTM model.
In this paper, we present a method for jointly-learning a microphone selection mechanism and a speech enhancement network for multi-channel speech enhancement with an ad-hoc microphone array. The attention-based microphone selection mechanism is trai ned to reduce communication-costs through a penalty term which represents a task-performance/ communication-cost trade-off. While working within the trade-off, our method can intelligently stream from more microphones in lower SNR scenes and fewer microphones in higher SNR scenes. We evaluate the model in complex echoic acoustic scenes with moving sources and show that it matches the performance of models that stream from a fixed number of microphones while reducing communication costs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا