ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Channel Speech Enhancement using Graph Neural Networks

89   0   0.0 ( 0 )
 نشر من قبل Panagiotis Tzirakis
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Multi-channel speech enhancement aims to extract clean speech from a noisy mixture using signals captured from multiple microphones. Recently proposed methods tackle this problem by incorporating deep neural network models with spatial filtering techniques such as the minimum variance distortionless response (MVDR) beamformer. In this paper, we introduce a different research direction by viewing each audio channel as a node lying in a non-Euclidean space and, specifically, a graph. This formulation allows us to apply graph neural networks (GNN) to find spatial correlations among the different channels (nodes). We utilize graph convolution networks (GCN) by incorporating them in the embedding space of a U-Net architecture. We use LibriSpeech dataset and simulate room acoustics data to extensively experiment with our approach using different array types, and number of microphones. Results indicate the superiority of our approach when compared to prior state-of-the-art method.



قيم البحث

اقرأ أيضاً

331 - Yihui Fu , Jian Wu , Yanxin Hu 2020
In this paper, we propose a multi-channel network for simultaneous speech dereverberation, enhancement and separation (DESNet). To enable gradient propagation and joint optimization, we adopt the attentional selection mechanism of the multi-channel f eatures, which is originally proposed in end-to-end unmixing, fixed-beamforming and extraction (E2E-UFE) structure. Furthermore, the novel deep complex convolutional recurrent network (DCCRN) is used as the structure of the speech unmixing and the neural network based weighted prediction error (WPE) is cascaded beforehand for speech dereverberation. We also introduce the staged SNR strategy and symphonic loss for the training of the network to further improve the final performance. Experiments show that in non-dereverberated case, the proposed DESNet outperforms DCCRN and most state-of-the-art structures in speech enhancement and separation, while in dereverberated scenario, DESNet also shows improvements over the cascaded WPE-DCCRN networks.
The front-end module in multi-channel automatic speech recognition (ASR) systems mainly use microphone array techniques to produce enhanced signals in noisy conditions with reverberation and echos. Recently, neural network (NN) based front-end has sh own promising improvement over the conventional signal processing methods. In this paper, we propose to adopt the architecture of deep complex Unet (DCUnet) - a powerful complex-valued Unet-structured speech enhancement model - as the front-end of the multi-channel acoustic model, and integrate them in a multi-task learning (MTL) framework along with cascaded framework for comparison. Meanwhile, we investigate the proposed methods with several training strategies to improve the recognition accuracy on the 1000-hours real-world XiaoMi smart speaker data with echos. Experiments show that our proposed DCUnet-MTL method brings about 12.2% relative character error rate (CER) reduction compared with the traditional approach with array processing plus single-channel acoustic model. It also achieves superior performance than the recently proposed neural beamforming method.
The combined electric and acoustic stimulation (EAS) has demonstrated better speech recognition than conventional cochlear implant (CI) and yielded satisfactory performance under quiet conditions. However, when noise signals are involved, both the el ectric signal and the acoustic signal may be distorted, thereby resulting in poor recognition performance. To suppress noise effects, speech enhancement (SE) is a necessary unit in EAS devices. Recently, a time-domain speech enhancement algorithm based on the fully convolutional neural networks (FCN) with a short-time objective intelligibility (STOI)-based objective function (termed FCN(S) in short) has received increasing attention due to its simple structure and effectiveness of restoring clean speech signals from noisy counterparts. With evidence showing the benefits of FCN(S) for normal speech, this study sets out to assess its ability to improve the intelligibility of EAS simulated speech. Objective evaluations and listening tests were conducted to examine the performance of FCN(S) in improving the speech intelligibility of normal and vocoded speech in noisy environments. The experimental results show that, compared with the traditional minimum-mean square-error SE method and the deep denoising autoencoder SE method, FCN(S) can obtain better gain in the speech intelligibility for normal as well as vocoded speech. This study, being the first to evaluate deep learning SE approaches for EAS, confirms that FCN(S) is an effective SE approach that may potentially be integrated into an EAS processor to benefit users in noisy environments.
To date, mainstream target speech separation (TSS) approaches are formulated to estimate the complex ratio mask (cRM) of the target speech in time-frequency domain under supervised deep learning framework. However, the existing deep models for estima ting cRM are designed in the way that the real and imaginary parts of the cRM are separately modeled using real-valued training data pairs. The research motivation of this study is to design a deep model that fully exploits the temporal-spectral-spatial information of multi-channel signals for estimating cRM directly and efficiently in complex domain. As a result, a novel TSS network is designed consisting of two modules, a complex neural spatial filter (cNSF) and an MVDR. Essentially, cNSF is a cRM estimation model and an MVDR module is cascaded to the cNSF module to reduce the nonlinear speech distortions introduced by neural network. Specifically, to fit the cRM target, all input features of cNSF are reformulated into complex-valued representations following the supervised learning paradigm. Then, to achieve good hierarchical feature abstraction, a complex deep neural network (cDNN) is delicately designed with U-Net structure. Experiments conducted on simulated multi-channel speech data demonstrate the proposed cNSF outperforms the baseline NSF by 12.1% scale-invariant signal-to-distortion ratio and 33.1% word error rate.
96 - Xiaofei Li , Radu Horaud 2020
This paper proposes a delayed subband LSTM network for online monaural (single-channel) speech enhancement. The proposed method is developed in the short time Fourier transform (STFT) domain. Online processing requires frame-by-frame signal reception and processing. A paramount feature of the proposed method is that the same LSTM is used across frequencies, which drastically reduces the number of network parameters, the amount of training data and the computational burden. Training is performed in a subband manner: the input consists of one frequency, together with a few context frequencies. The network learns a speech-to-noise discriminative function relying on the signal stationarity and on the local spectral pattern, based on which it predicts a clean-speech mask at each frequency. To exploit future information, i.e. look-ahead, we propose an output-delayed subband architecture, which allows the unidirectional forward network to process a few future frames in addition to the current frame. We leverage the proposed method to participate to the DNS real-time speech enhancement challenge. Experiments with the DNS dataset show that the proposed method achieves better performance-measuring scores than the DNS baseline method, which learns the full-band spectra using a gated recurrent unit network.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا