ﻻ يوجد ملخص باللغة العربية
The prosperity of the cryptocurrency ecosystem drives the needs for digital asset trading platforms. Beyond centralized exchanges (CEXs), decentralized exchanges (DEXs) are introduced to allow users to trade cryptocurrency without transferring the custody of their digital assets to the middlemen, thus eliminating the security and privacy issues of CEX. Uniswap, as the most prominent cryptocurrency DEX, is continuing to attract scammers, with fraudulent cryptocurrencies flooding in the ecosystem. In this paper, we take the first step to detect and characterize scam tokens on Uniswap. We first collect all the transactions related to Uniswap exchanges and investigate the landscape of cryptocurrency trading on Uniswap from different perspectives. Then, we propose an accurate approach for flagging scam tokens on Uniswap based on a guilt-by-association heuristic and a machine-learning powered technique. We have identified over 10K scam tokens listed on Uniswap, which suggests that roughly 50% of the tokens listed on Uniswap are scam tokens. All the scam tokens and liquidity pools are created specialized for the rug pull scams, and some scam tokens have embedded tricks and backdoors in the smart contracts. We further observe that thousands of collusion addresses help carry out the scams in league with the scam token/pool creators. The scammers have gained a profit of at least $16 million from 40,165 potential victims. Our observations in this paper suggest the urgency to identify and stop scams in the decentralized finance ecosystem.
The XRP Ledger (XRPL) is a peer-to-peer cryptographic ledger. It features a decentralized exchange (DEX) where network participants can issue and trade user-defined digital assets and currencies. We present Jack the Rippler, a bot that identifies and
The developers of Ethereum smart contracts often implement administrating patterns, such as censoring certain users, creating or destroying balances on demand, destroying smart contracts, or injecting arbitrary code. These routines turn an ERC20 toke
We present True2F, a system for second-factor authentication that provides the benefits of conventional authentication tokens in the face of phishing and software compromise, while also providing strong protection against token faults and backdoors.
Membership inference attacks seek to infer membership of individual training instances of a model to which an adversary has black-box access through a machine learning-as-a-service API. In providing an in-depth characterization of membership privacy
As the COVID-19 pandemic started triggering widespread lockdowns across the globe, cybercriminals did not hesitate to take advantage of users increased usage of the Internet and their reliance on it. In this paper, we carry out a comprehensive measur