ﻻ يوجد ملخص باللغة العربية
The hunt for dark matter remains one of the principal objectives of modern physics and cosmology. Searches for dark matter in the form of axions are proposed or underway across a range of experimental collaborations. As we look to the next generation of detectors, a natural question to ask is whether there are new experimental designs waiting to be discovered and how we might find them. Here we take a new approach to the experimental design procedure by using gradient descent techniques to search for optimal detector designs. We provide a proof of principle for this technique by searching 1D detectors varying the bulk properties of the detector until the optimal detector design is obtained. Remarkably, we find the detector is capable of out-performing a human designed experiment on which the search was initiated. This opens the door to further gradient descent searches of more complex 2D and 3D designs across a wider variety of materials and boundary geometries of the detector. There is also an opportunity to use more sophisticated gradient descent algorithms to complete a more exhaustive scan of the landscape of designs.
If there are a plethora of axions in nature, they may have a complicated potential and create an axion landscape. We study a possibility that one of the axions is so light that it is cosmologically stable, explaining the observed dark matter density.
The axion, originated from the Peccei-Quinn mechanism proposed to solve the strong-CP problem, is a well motivated and popular dark matter candidate. Experimental searches for this hypothetical particle are starting to reach theoretically interesting
In an effort to extend the usefulness of microwave cavity detectors to higher axion masses, above ~8 $mu$eV (~2 GHz), a numerical trade study of cavities was conducted to investigate the merit of using variable periodic post arrays and regulating van
Axion Dark Matter eXperiment (ADMX) ultra low noise haloscope technology has enabled the successful completion of two science runs (1A and 1B) that looked for dark matter axions in the $2.66$ to $3.1$ $mu$eV mass range with Dine-Fischler-Srednicki-Zh
We discuss the possibility to predict the QCD axion mass in the context of grand unified theories. We investigate the implementation of the DFSZ mechanism in the context of renormalizable SU(5) theories. In the simplest theory, the axion mass can be