ﻻ يوجد ملخص باللغة العربية
The simultaneous orthogonal matching pursuit (SOMP) is a popular, greedy approach for common support recovery of a row-sparse matrix. The support recovery guarantee of SOMP has been extensively studied under the noiseless scenario. Compared to the noiseless scenario, the performance analysis of noisy SOMP is still nascent, in which only the restricted isometry property (RIP)-based analysis has been studied. In this paper, we present the mutual incoherence property (MIP)-based study for performance analysis of noisy SOMP. Specifically, when noise is bounded, we provide the condition on which the exact support recovery is guaranteed in terms of the MIP. When noise is unbounded, we instead derive a bound on the successful recovery probability (SRP) that depends on the specific distribution of noise. Then we focus on the common case when noise is random Gaussian and show that the lower bound of SRP follows Tracy-Widom law distribution. The analysis reveals the number of measurements, noise level, the number of sparse vectors, and the value of MIP constant that are required to guarantee a predefined recovery performance. Theoretically, we show that the MIP constant of the measurement matrix must increase proportional to the noise standard deviation, and the number of sparse vectors needs to grow proportional to the noise variance. Finally, we extensively validate the derived analysis through numerical simulations.
We present a detailed analysis of the unconstrained $ell_1$-method Lasso method for sparse recovery of noisy data. The data is recovered by sensing its compressed output produced by randomly generated class of observing matrices satisfying a Restrict
In this paper, we investigate the uplink transmission performance of low-power wide-area (LPWA) networks with regards to coexisting radio modules. We adopt long range (LoRa) radio technique as an example of the network of focus even though our analys
A new family of operators, coined hierarchical measurement operators, is introduced and discussed within the well-known hierarchical sparse recovery framework. Such operator is a composition of block and mixing operations and notably contains the Kro
Employing reconfigurable intelligent surfaces (RIS) is emerging as a game-changer candidate, thanks to their unique capabilities in improving the power efficiency and supporting the ubiquity of future wireless communication systems. Conventionally, a
High hardware cost and high power consumption of massive multiple-input and multiple output (MIMO) are still two challenges for the future wireless communications including beyond 5G. Adopting the low-resolution analog-to-digital converter (ADC) is v