ﻻ يوجد ملخص باللغة العربية
We present a detailed analysis of the unconstrained $ell_1$-method Lasso method for sparse recovery of noisy data. The data is recovered by sensing its compressed output produced by randomly generated class of observing matrices satisfying a Restricted Isometry Property. We derive a new $ell_1$-error estimate which highlights the dependence on a certain compressiblity threshold: once the computed re-scaled residual crosses that threshold, the error is driven only by the (assumed small) noise and compressiblity. Here we identify the re-scaled residual as a key quantity which drives the error and we derive its sharp lower bound of order square-root of the size of the support of the computed solution.
The simultaneous orthogonal matching pursuit (SOMP) is a popular, greedy approach for common support recovery of a row-sparse matrix. The support recovery guarantee of SOMP has been extensively studied under the noiseless scenario. Compared to the no
In this paper, we investigate in a unified way the structural properties of solutions to inverse problems. These solutions are regularized by the generic class of semi-norms defined as a decomposable norm composed with a linear operator, the so-calle
In this paper, we put forth a new joint sparse recovery algorithm called signal space matching pursuit (SSMP). The key idea of the proposed SSMP algorithm is to sequentially investigate the support of jointly sparse vectors to minimize the subspace d
Recovery algorithms play a key role in compressive sampling (CS). Most of current CS recovery algorithms are originally designed for one-dimensional (1D) signal, while many practical signals are two-dimensional (2D). By utilizing 2D separable samplin
In the long-studied problem of combinatorial group testing, one is asked to detect a set of $k$ defective items out of a population of size $n$, using $m ll n$ disjunctive measurements. In the non-adaptive setting, the most widely used combinatorial