ﻻ يوجد ملخص باللغة العربية
Despite the tremendous interest in cryptocurrencies like Bitcoin and Ethereum today, many aspects of the underlying consensus protocols are poorly understood. Therefore, the search for protocols that improve either throughput or security (or both) continues. Bitcoin always selects the longest chain (i.e., the one with most work). Forks may occur when two miners extend the same block simultaneously, and the frequency of forks depends on how fast blocks are propagated in the network. In the GHOST protocol, used by Ethereum, all blocks involved in the fork contribute to the security. However, the greedy chain selection rule of GHOST does not consider the full information available in the block tree, which has led to some concerns about its security. This paper introduces a new family of protocols, called Medium, which takes the structure of the whole block tree into account, by weighting blocks differently according to their depths. Bitcoin and GHOST result as special cases. This protocol leads to new insights about the security of Bitcoin and GHOST and paves the way for developing network- and application-specific protocols, in which the influence of forks on the chain-selection process can be controlled. It is shown that almost all protocols in this family achieve strictly greater throughput than Bitcoin (at the same security level) and resist attacks that can be mounted against GHOST.
We focus on the problem of botnet orchestration and discuss how attackers can leverage decentralised technologies to dynamically control botnets with the goal of having botnets that are resilient against hostile takeovers. We cover critical elements
The WLCG Authorisation Working Group was formed in July 2017 with the objective to understand and meet the needs of a future-looking Authentication and Authorisation Infrastructure (AAI) for WLCG experiments. Much has changed since the early 2000s wh
We study the {em min-cost chain-constrained spanning-tree} (abbreviated mcst) problem: find a min-cost spanning tree in a graph subject to degree constraints on a nested family of node sets. We devise the {em first} polytime algorithm that finds a sp
We prove Bitcoin is secure under temporary dishonest majority. We assume the adversary can corrupt a specific fraction of parties and also introduce crash failures, i.e., some honest participants are offline during the execution of the protocol. We d
Weighted Szeged index is a recently introduced extension of the well-known Szeged index. In this paper, we present a new tool to analyze and characterize minimum weighted Szeged index trees. We exhibit the best trees with up to 81 vertices and use th