ﻻ يوجد ملخص باللغة العربية
We focus on the problem of botnet orchestration and discuss how attackers can leverage decentralised technologies to dynamically control botnets with the goal of having botnets that are resilient against hostile takeovers. We cover critical elements of the Bitcoin blockchain and its usage for `floating command and control servers. We further discuss how blockchain-based botnets can be built and include a detailed discussion of our implementation. We also showcase how specific Bitcoin APIs can be used in order to write extraneous data to the blockchain. Finally, while in this paper, we use Bitcoin to build our resilient botnet proof of concept, the threat is not limited to Bitcoin blockchain and can be generalized.
Despite the tremendous interest in cryptocurrencies like Bitcoin and Ethereum today, many aspects of the underlying consensus protocols are poorly understood. Therefore, the search for protocols that improve either throughput or security (or both) co
Lightning Network (LN) addresses the scalability problem of Bitcoin by leveraging off-chain transactions. Nevertheless, it is not possible to run LN on resource-constrained IoT devices due to its storage, memory, and processing requirements. Therefor
We prove Bitcoin is secure under temporary dishonest majority. We assume the adversary can corrupt a specific fraction of parties and also introduce crash failures, i.e., some honest participants are offline during the execution of the protocol. We d
One reason for the popularity of Bitcoin is due to its anonymity. Although several heuristics have been used to break the anonymity, new approaches are proposed to enhance its anonymity at the same time. One of them is the mixing service. Unfortunate
Due to the pseudo-anonymity of the Bitcoin network, users can hide behind their bitcoin addresses that can be generated in unlimited quantity, on the fly, without any formal links between them. Thus, it is being used for payment transfer by the actor