ﻻ يوجد ملخص باللغة العربية
Critical exponent $gamma succeq 1.1$ characterizes behavior of the mechanical susceptibility of a real fluid when temperature approaches the critical one. It definitely results in the zero Gaussian curvature of the local shape of the critical point on the thermodynamic equation of state surface, which imposes a new constraint upon the construction of the potential equation of state of the real fluid from the empirical data. All known empirical equations of state suffer from a weakness that the Gaussian curvature of the critical point is negative definite instead of zero, and a new equations of state for the vapor-liquid phase transition with $gamma succ 1$ is constructed.
We uncover an aspect of the Kibble--Zurek phenomenology, according to which the spectrum of critical exponents of a classical or quantum phase transition is revealed, by driving the system slowly in directions parallel to the phase boundary. This res
We present a complementary estimation of the critical exponent $alpha$ of the specific heat of the 5D random-field Ising model from zero-temperature numerical simulations. Our result $alpha = 0.12(2)$ is consistent with the estimation coming from the
We present a systematic method to calculate the universal scaling functions for the critical Casimir force and the according potential of the two-dimensional Ising model with various boundary conditions. Therefore we start with the dimer representati
The cosmological redshift phenomenon can be described by the dark matter field fluid model, the results deduced from this model agree very well with the observations. The observed cosmological redshift of light depends on both the speed of the emitte
We study the critical behavior of the Ising model in three dimensions on a lattice with site disorder by using Monte Carlo simulations. The disorder is either uncorrelated or long-range correlated with correlation function that decays according to a