ﻻ يوجد ملخص باللغة العربية
We study the critical behavior of the Ising model in three dimensions on a lattice with site disorder by using Monte Carlo simulations. The disorder is either uncorrelated or long-range correlated with correlation function that decays according to a power-law $r^{-a}$. We derive the critical exponent of the correlation length $ u$ and the confluent correction exponent $omega$ in dependence of $a$ by combining different concentrations of defects $0.05 leq p_d leq 0.4$ into one global fit ansatz and applying finite-size scaling techniques. We simulate and study a wide range of different correlation exponents $1.5 leq a leq 3.5$ as well as the uncorrelated case $a = infty$ and are able to provide a global picture not yet known from previous works. Additionally, we perform a dedicated analysis of our long-range correlated disorder ensembles and provide estimates for the critical temperatures of the system in dependence of the correlation exponent $a$ and the concentrations of defects $p_d$. We compare our results to known results from other works and to the conjecture of Weinrib and Halperin: $ u = 2/a$ and discuss the occurring deviations.
We study critical behavior of the diluted 2D Ising model in the presence of disorder correlations which decay algebraically with distance as $sim r^{-a}$. Mapping the problem onto 2D Dirac fermions with correlated disorder we calculate the critical p
We present results of a Monte Carlo study for the ferromagnetic Ising model with long range interactions in two dimensions. This model has been simulated for a large range of interaction parameter $sigma$ and for large sizes. We observe that the resu
Statistical mechanical models with local interactions in $d>1$ dimension can be regarded as $d=1$ dimensional models with regular long range interactions. In this paper we study the critical properties of Ising models having $V$ sites, each having $z
We show that spatial resolved dissipation can act on Ising lattices molding the universality class of their critical points. We consider non-local spin losses with a Liouvillian gap closing at small momenta as $propto q^alpha$, with $alpha$ a positiv
We analyze a controversial question about the universality class of the three-dimensional Ising model with long-range-correlated disorder. Whereas both analytical and numerical studies performed so far support an extended Harris criterion (A. Weinrib