ترغب بنشر مسار تعليمي؟ اضغط هنا

A semiclassical singularity theorem

144   0   0.0 ( 0 )
 نشر من قبل Eleni-Alexandra Kontou
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum fields do not satisfy the pointwise energy conditions that are assumed in the original singularity theorems of Penrose and Hawking. Accordingly, semiclassical quantum gravity lies outside their scope. Although a number of singularity theorems have been derived under weakened energy conditions, none is directly derived from quantum field theory. Here, we employ a quantum energy inequality satisfied by the quantized minimally coupled linear scalar field to derive a singularity theorem valid in semiclassical gravity. By considering a toy cosmological model, we show that our result predicts timelike geodesic incompleteness on plausible timescales with reasonable conditions at a spacelike Cauchy surface.



قيم البحث

اقرأ أيضاً

Hawkings singularity theorem concerns matter obeying the strong energy condition (SEC), which means that all observers experience a nonnegative effective energy density (EED), thereby guaranteeing the timelike convergence property. However, there are models that do not satisfy the SEC and therefore lie outside the scope of Hawkings hypotheses, an important example being the massive Klein-Gordon field. Here we derive lower bounds on local averages of the EED for solutions to the Klein-Gordon equation, allowing nonzero mass and nonminimal coupling to the scalar curvature. The averages are taken along timelike geodesics or over spacetime volumes, and our bounds are valid for a range of coupling constants including both minimal and conformal coupling. Using methods developed by Fewster and Galloway, these lower bounds are applied to prove a Hawking-type singularity theorem for solutions to the Einstein-Klein-Gordon theory, asserting that solutions with sufficient initial contraction at a compact Cauchy surface will be future timelike geodesically incomplete.
We provide a detailed proof of Hawkings singularity theorem in the regularity class $C^{1,1}$, i.e., for spacetime metrics possessing locally Lipschitz continuous first derivatives. The proof uses recent results in $C^{1,1}$-causality theory and is b ased on regularisation techniques adapted to the causal structure.
The original singularity theorems of Penrose and Hawking were proved for matter obeying the Null Energy Condition or Strong Energy Condition respectively. Various authors have prov
The Abstract Boundary singularity theorem was first proven by Ashley and Scott. It links the existence of incomplete causal geodesics in strongly causal, maximally extended spacetimes to the existence of Abstract Boundary essential singularities, i.e ., non-removable singular boundary points. We give two generalizations of this theorem: the first to continuous causal curves and the distinguishing condition, the second to locally Lipschitz curves in manifolds such that no inextendible locally Lipschitz curve is totally imprisoned. To do this we extend generalized affine parameters from $C^1$ curves to locally Lipschitz curves.
79 - E. Minguzzi 2019
The global hyperbolicity assumption present in gravitational collapse singularity theorems is in tension with the quantum mechanical phenomenon of black hole evaporation. In this work I show that the causality conditions in Penroses theorem can be al most completely removed. As a result, it is possible to infer the formation of spacetime singularities even in the absence of predictability and hence compatibly with quantum field theory and black hole evaporation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا