ترغب بنشر مسار تعليمي؟ اضغط هنا

Equal Risk Pricing and Hedging of Financial Derivatives with Convex Risk Measures

188   0   0.0 ( 0 )
 نشر من قبل Saeed Marzban
 تاريخ النشر 2020
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider the problem of equal risk pricing and hedging in which the fair price of an option is the price that exposes both sides of the contract to the same level of risk. Focusing for the first time on the context where risk is measured according to convex risk measures, we establish that the problem reduces to solving independently the writer and the buyers hedging problem with zero initial capital. By further imposing that the risk measures decompose in a way that satisfies a Markovian property, we provide dynamic programming equations that can be used to solve the hedging problems for both the case of European and American options. All of our results are general enough to accommodate situations where the risk is measured according to a worst-case risk measure as is typically done in robust optimization. Our numerical study illustrates the advantages of equal risk pricing over schemes that only account for a single party, pricing based on quadratic hedging (i.e. $epsilon$-arbitrage pricing), or pricing based on a fixed equivalent martingale measure (i.e. Black-Scholes pricing). In particular, the numerical results confirm that when employing an equal risk price both the writer and the buyer end up being exposed to risks that are more similar and on average smaller than what they would experience with the other approaches.



قيم البحث

اقرأ أيضاً

Recently equal risk pricing, a framework for fair derivative pricing, was extended to consider dynamic risk measures. However, all current implementations either employ a static risk measure that violates time consistency, or are based on traditional dynamic programming solution schemes that are impracticable in problems with a large number of underlying assets (due to the curse of dimensionality) or with incomplete asset dynamics information. In this paper, we extend for the first time a famous off-policy deterministic actor-critic deep reinforcement learning (ACRL) algorithm to the problem of solving a risk averse Markov decision process that models risk using a time consistent recursive expectile risk measure. This new ACRL algorithm allows us to identify high quality time consistent hedging policies (and equal risk prices) for options, such as basket options, that cannot be handled using traditional methods, or in context where only historical trajectories of the underlying assets are available. Our numerical experiments, which involve both a simple vanilla option and a more exotic basket option, confirm that the new ACRL algorithm can produce 1) in simple environments, nearly optimal hedging policies, and highly accurate prices, simultaneously for a range of maturities 2) in complex environments, good quality policies and prices using reasonable amount of computing resources; and 3) overall, hedging strategies that actually outperform the strategies produced using static risk measures when the risk is evaluated at later points of time.
281 - Eduard Rotenstein 2013
We shall study backward stochastic differential equations and we will present a new approach for the existence of the solution. This type of equation appears very often in the valuation of financial derivatives in complete markets. Therefore, the ide ntification of the solution as the unique element in a certain Banach space where a suitably chosen functional attains its minimum becomes interesting for numerical computations.
69 - Shuang Li , Gongguo Tang , 2019
The landscape of empirical risk has been widely studied in a series of machine learning problems, including low-rank matrix factorization, matrix sensing, matrix completion, and phase retrieval. In this work, we focus on the situation where the corre sponding population risk is a degenerate non-convex loss function, namely, the Hessian of the population risk can have zero eigenvalues. Instead of analyzing the non-convex empirical risk directly, we first study the landscape of the corresponding population risk, which is usually easier to characterize, and then build a connection between the landscape of the empirical risk and its population risk. In particular, we establish a correspondence between the critical points of the empirical risk and its population risk without the strongly Morse assumption, which is required in existing literature but not satisfied in degenerate scenarios. We also apply the theory to matrix sensing and phase retrieval to demonstrate how to infer the landscape of empirical risk from that of the corresponding population risk.
189 - A. Jobert , L. C. G. Rogers 2007
This paper approaches the definition and properties of dynamic convex risk measures through the notion of a family of concave valuation operators satisfying certain simple and credible axioms. Exploring these in the simplest context of a finite time set and finite sample space, we find natural risk-transfer and time-consistency properties for a firm seeking to spread its risk across a group of subsidiaries.
In this paper, we study general monetary risk measures (without any convexity or weak convexity). A monetary (respectively, positively homogeneous) risk measure can be characterized as the lower envelope of a family of convex (respectively, coherent) risk measures. The proof does not depend on but easily leads to the classical representation theorems for convex and coherent risk measures. When the law-invariance and the SSD (second-order stochastic dominance)-consistency are involved, it is not the convexity (respectively, coherence) but the comonotonic convexity (respectively, comonotonic coherence) of risk measures that can be used for such kind of lower envelope characterizations in a unified form. The representation of a law-invariant risk measure in terms of VaR is provided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا