ﻻ يوجد ملخص باللغة العربية
The interactions between atoms and molecules may be described by a potential energy function of the nuclear coordinates. Non-bonded interactions are dominated by repulsive forces at short range and attractive dispersion forces at long range. Experimental data on the detailed interaction potentials for non-bonded interatomic and intermolecular forces is scarce. Here we use terahertz spectroscopy and inelastic neutron scattering to determine the potential energy function for the non-bonded interaction between single He atoms and encapsulating C60 fullerene cages, in the helium endofullerenes 3He and 4He, synthesised by molecular surgery techniques. The experimentally derived potential is compared to estimates from quantum chemistry calculations, and from sums of empirical two-body potentials.
It is demonstrated that the forbidden lines, which must be present in the SERS, TERS and SEIRA spectra of molecules with sufficiently high symmetry, associated with a strong quadrupole light-molecule interaction, are absent in the fullerene C60. This
It is demonstrated that in fullerene C70 which can be considered as a deformed fullerene C60 in some sense there is a withdrawal of an electrodynamical forbiddance of a strong quadrupole light-molecule interaction which is realized in the fullerene C
Encapsulation of a single water molecule in fullerene-C60 via chemical surgery provides a unique opportunity to study the distinct rotational dynamics of the water spin isomers at cryogenic temperatures. Here, we employ single-cycle terahertz (THz) p
Using a hydrogen molecule as a test system we demonstrate how to compute the effective potential according to the formalism of the new density functional theory (DFT), in which the basic variable is the set of spherically averaged densities instead o
Conventional information processors freely convert information between different physical carriers to process, store, or transmit information. It seems plausible that quantum information will also be held by different physical carriers in application