ﻻ يوجد ملخص باللغة العربية
Encapsulation of a single water molecule in fullerene-C60 via chemical surgery provides a unique opportunity to study the distinct rotational dynamics of the water spin isomers at cryogenic temperatures. Here, we employ single-cycle terahertz (THz) pulses to coherently excite the low-frequency rotational motion of ortho- and para-water, encapsulated in fullerene-C60. The THz pulse slightly orients the water electric dipole moments along the field polarization leading to the subsequent emission of electromagnetic waves, which we resolve via the field-free electro-optic sampling technique. At temperatures above ~100 K, the rotation of water in its cage is overdamped and no emission is resolved. At lower temperatures, the water rotation gains a long coherence decay time, allowing observation of the coherent emission for 10-15 ps after the initial excitation. We observe the real-time change of the emission pattern after cooling to 4 K, corresponding to the conversion of a mixture of ortho-water to para-water over the course of 10 hours.
Despite the low elemental deuterium abundance in the Galaxy, enhanced molecular D/H ratios have been found in the environments of low-mass star forming regions, and in particular the Class 0 protostar IRAS 16293-2422. The CHESS (Chemical HErschel Sur
Results for quantum mechanical calculations of the integral cross sections and corresponding thermal rate coefficients for para-/ortho-H2+HD collisions are presented. Because of significant astrophysical interest in regard to the cooling of primodial
We have used the Herschel-HIFI instrument to observe both nuclear spin symmetries of amidogen (NH2) towards the high-mass star-forming regions W31C (G10.6-0.4), W49N (G43.2-0.1), W51 (G49.5-0.4) and G34.3+0.1. The aim is to investigate the ratio of n
Optical frequency comb-referenced measurements of self pressure-broadened line profiles of the R(8) to R(13) lines in the thisband combination band of acetylene near 1.52$mu$m are reported. The analysis of the data found no evidence for a previously
We analyze using Poisson equation the spatial distributions of the positive charge of carbon atomic nuclei shell and negative charge of electron clouds forming the electrostatic potential of the C60 fullerene shell as a whole. We consider also the ca