ﻻ يوجد ملخص باللغة العربية
The topological structure associated with the branchpoint singularity around an exceptional point (EP) provides new tools for controlling the propagation of electromagnetic waves and their interaction with matter. To date, observation of EPs in light-matter interactions has remained elusive and has hampered further progress in applications of EP physics. Here, we demonstrate the emergence of EPs in the electrically controlled interaction of light with a collection of organic molecules in the terahertz regime at room temperature. We show, using time-domain terahertz spectroscopy, that the intensity and phase of terahertz pulses can be controlled by a gate voltage which drives the device across the EP. This fully electrically-tuneable system allows reconstructing the Riemann surface associated with the complex energy landscape and provides a topological control of light by tuning the loss-imbalance and frequency detuning of interacting modes. We anticipate that our work could pave the way for new means of dynamic control on the intensity and phase of terahertz field, developing topological optoelectronics, and studying the manifestations of EP physics in the quantum correlations of the light emitted by a collection of emitters coupled to resonators.
Spin-dependent, directional light-matter interactions form the basis of chiral quantum networks. In the solid state, quantum emitters commonly possess circularly polarised optical transitions with spin-dependent handedness. We demonstrate theoretical
We investigate the effects of non-Hermiticity on topological pumping, and uncover a connection between a topological edge invariant based on topological pumping and the winding numbers of exceptional points. In Hermitian lattices, it is known that th
Exceptional points (EPs) are degeneracies in open wave systems with coalescence of at least two energy levels and their corresponding eigenstates. In higher dimensions, more complex EP physics not found in two-state systems is observed. We consider t
Topology is central to understanding and engineering materials that display robust physical phenomena immune to imperfections. The topological character of a material is quantified by topological invariants that simplify the classification of topolog
An astroid-shaped loop of exceptional points (EPs), comprising four cusps, is found to spawn from the triple degeneracy point in the Brillouin zone (BZ) of a Lieb lattice with nearest-neighbor hoppings when non-Hermiticity is introduced. The occurren