ﻻ يوجد ملخص باللغة العربية
We investigate the effects of non-Hermiticity on topological pumping, and uncover a connection between a topological edge invariant based on topological pumping and the winding numbers of exceptional points. In Hermitian lattices, it is known that the topologically nontrivial regime of the topological pump only arises in the infinite-system limit. In finite non-Hermitian lattices, however, topologically nontrivial behavior can also appear. We show that this can be understood in terms of the effects of encircling a pair of exceptional points during a pumping cycle. This phenomenon is observed experimentally, in a non-Hermitian microwave network containing variable gain amplifiers.
We study coupled non-Hermitian Rice-Mele chains, which consist of Su-Schrieffer-Heeger (SSH) chain system with staggered on-site imaginary potentials. In two dimensional (2D) thermodynamic limit, the exceptional points (EPs) are shown to exhibit topo
An astroid-shaped loop of exceptional points (EPs), comprising four cusps, is found to spawn from the triple degeneracy point in the Brillouin zone (BZ) of a Lieb lattice with nearest-neighbor hoppings when non-Hermiticity is introduced. The occurren
The fidelity susceptibility has been used to detect quantum phase transitions in the Hermitian quantum many-body systems over a decade, where the fidelity susceptibility density approaches $+infty$ in the thermodynamic limits. Here the fidelity susce
Over the past two decades, open systems that are described by a non-Hermitian Hamiltonian have become a subject of intense research. These systems encompass classical wave systems with balanced gain and loss, semiclassical models with mode selective
Engineered non-Hermitian systems featuring exceptional points can lead to a host of extraordinary phenomena in diverse fields ranging from photonics, acoustics, opto-mechanics, electronics, to atomic physics. Here we introduce and present non-Hermiti