ﻻ يوجد ملخص باللغة العربية
It is known that entanglement can be converted to work in quantum composite systems. In this paper we consider a quench protocol for two initially independent reservoirs $A$ and $B$ described by the quantum thermal states. For a free fermion model at low temperatures, the von Neumann entropy of each reservoir increases once the reservoirs are coupled. At the moment of decoupling there is an energy transfer to the system in the amount set by the von Neumann entropy accumulated during joint evolution of $A$ and $B$. This energy transfer appears as work produced by the quench to decouple the reservoirs. Once the reservoirs are disconnected, the information about their mutual correlations $-$ von Neumann entropy $-$ is stored in the energy increment of each reservoir. This result provides a possibility of a direct readout of quantum correlations at low temperature.
We present a simple derivation of the Hellmann-Feynman theorem at finite temperature. We illustrate its validity by considering three relevant examples which can be used in quantum mechanics lectures: the one-dimensional harmonic oscillator, the one-
The non-equilibrium response of a quantum many-body system defines its fundamental transport properties and how initially localized quantum information spreads. However, for long-range-interacting quantum systems little is known. We address this issu
We investigate the detailed properties of Observational entropy, introduced by v{S}afr{a}nek et al. [Phys. Rev. A 99, 010101 (2019)] as a generalization of Boltzmann entropy to quantum mechanics. This quantity can involve multiple coarse-grainings, e
Closed quantum many-body systems out of equilibrium pose several long-standing problems in physics. Recent years have seen a tremendous progress in approaching these questions, not least due to experiments with cold atoms and trapped ions in instance
In this paper, we investigate and compare two well-developed definitions of entropy relevant for describing the dynamics of isolated quantum systems: bipartite entanglement entropy and observational entropy. In a model system of interacting particles