ﻻ يوجد ملخص باللغة العربية
In classical finite-range spin systems, especially those with disorder such as spin glasses, a low-temperature Gibbs state may be a mixture of a number of pure or ordered states; the complexity of the Gibbs state has been defined in the past roughly as the logarithm of this number, assuming the question is meaningful in a finite system. As non-trivial pure-state structure is lost in finite size, in a recent paper [Phys. Rev. E 101, 042114 (2020)] Holler and the author introduced a definition of the complexity of an infinite-size Gibbs state as the mutual information between the pure state and the spin configuration in a finite region, and applied this also within a metastate construction. (A metastate is a probability distribution on Gibbs states.) They found an upper bound on the complexity for models of Ising spins in which each spin interacts with only a finite number of others, in terms of the surface area of the region, for all $Tgeq 0$. In the present paper, the complexity of a metastate is defined likewise in terms of the mutual information between the Gibbs state and the spin configuration. Upper bounds are found for each of these complexities for general finite-range (i.e. short- or long-range, in a sense we define) mixed $p$-spin interactions of discrete or continuous spins (such as $m$-vector models), but only for $T>0$. For short-range models, the bound reduces to the surface area. For long-range interactions, the definition of a Gibbs state has to be modified, and for these models we also prove that the states obtained within the metastate constructions are Gibbs states under the modified definition. All results are valid for a large class of disorder distributions.
Understanding the low-temperature pure state structure of spin glasses remains an open problem in the field of statistical mechanics of disordered systems. Here we study Monte Carlo dynamics, performing simulations of the growth of correlations follo
We investigate the generalized p-spin models that contain arbitrary diagonal operators U with no reflection symmetry. We derive general equations that give an opportunity to uncover the behavior of the system near the glass transition at different (c
We construct and analyze a family of $M$-component vectorial spin systems which exhibit glass transitions and jamming within supercooled paramagnetic states without quenched disorder. Our system is defined on lattices with connectivity $c=alpha M$ an
Using Monte Carlo simulations, we study the character of the spin-glass (SG) state of a site-diluted dipolar Ising model. We consider systems of dipoles randomly placed on a fraction x of all L^3 sites of a simple cubic lattice that point up or down
URh_2Ge_2 occupies an extraordinary position among the heavy-electron 122-compounds, by exhibiting a previously unidentified form of magnetic correlations at low temperatures, instead of the usual antiferromagnetism. Here we present new results of ac