ﻻ يوجد ملخص باللغة العربية
Understanding the low-temperature pure state structure of spin glasses remains an open problem in the field of statistical mechanics of disordered systems. Here we study Monte Carlo dynamics, performing simulations of the growth of correlations following a quench from infinite temperature to a temperature well below the spin-glass transition temperature $T_c$ for a one-dimensional Ising spin glass model with diluted long-range interactions. In this model, the probability $P_{ij}$ that an edge ${i,j}$ has nonvanishing interaction falls as a power-law with chord distance, $P_{ij}propto1/R_{ij}^{2sigma}$, and we study a range of values of $sigma$ with $1/2<sigma<1$. We consider a correlation function $C_{4}(r,t)$. A dynamic correlation length that shows power-law growth with time $xi(t)propto t^{1/z}$ can be identified in the data and, for large time $t$, $C_{4}(r,t)$ decays as a power law $r^{-alpha_d}$ with distance $r$ when $rll xi(t)$. The calculation can be interpreted in terms of the maturation metastate averaged Gibbs state, or MMAS, and the decay exponent $alpha_d$ differentiates between a trivial MMAS ($alpha_d=0$), as expected in the droplet picture of spin glasses, and a nontrivial MMAS ($alpha_d e 0$), as in the replica-symmetry-breaking (RSB) or chaotic pairs pictures. We find nonzero $alpha_d$ even in the regime $sigma >2/3$ which corresponds to short-range systems below six dimensions. For $sigma < 2/3$, the decay exponent $alpha_d$ follows the RSB prediction for the decay exponent $alpha_s = 3 - 4 sigma$ of the static metastate, consistent with a conjectured statics-dynamics relation, while it approaches $alpha_d=1-sigma$ in the regime $2/3<sigma<1$; however, it deviates from both lines in the vicinity of $sigma=2/3$.
Statistical mechanical models with local interactions in $d>1$ dimension can be regarded as $d=1$ dimensional models with regular long range interactions. In this paper we study the critical properties of Ising models having $V$ sites, each having $z
In classical finite-range spin systems, especially those with disorder such as spin glasses, a low-temperature Gibbs state may be a mixture of a number of pure or ordered states; the complexity of the Gibbs state has been defined in the past roughly
In this note we study metastability phenomena for a class of long-range Ising models in one-dimension. We prove that, under suitable general conditions, the configuration -1 is the only metastable state and we estimate the mean exit time. Moreover, w
Parisis formal replica-symmetry--breaking (RSB) scheme for mean-field spin glasses has long been interpreted in terms of many pure states organized ultrametrically. However, the early version of this interpretation, as applied to the short-range Edwa
In this paper we study bond percolation on a one-dimensional chain with power-law bond probability $C/ r^{1+sigma}$, where $r$ is the distance length between distinct sites. We introduce and test an order $N$ Monte Carlo algorithm and we determine as